Q-Learning Agent playing1 {env_id}
This is a trained model of a Q-Learning agent playing {env_id} .
Usage
python
model = load_from_hub(repo_id="{repo_id}", filename="q-learning.pkl")
Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
Evaluation results
- mean_reward on FrozenLake-v1-4x4-no_slipperyself-reported1.00 +/- 0.00