Edit model card

t4ai/distilbert-finetuned-t3-qa

This model is a fine-tuned version of distilbert-base-cased SQUaD Dataset (https://www.kaggle.com/datasets/stanfordu/stanford-question-answering-dataset). It achieves the following results on the evaluation set:

  • Train Loss: 0.7523
  • Epoch: 2

Model description

distilBERT base model fine-tuned for extractive Q&A. This model achieved an F1 score of 76.28 and EM score of 61.51 against SQUaD test set.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16755, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Epoch
1.5389 0
0.9645 1
0.7523 2

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for t4ai/distilbert-finetuned-t3-qa

Finetuned
(215)
this model

Spaces using t4ai/distilbert-finetuned-t3-qa 3