t4ai/distilbert-finetuned-t3-qa
This model is a fine-tuned version of distilbert-base-cased SQUaD Dataset (https://www.kaggle.com/datasets/stanfordu/stanford-question-answering-dataset). It achieves the following results on the evaluation set:
- Train Loss: 0.7523
- Epoch: 2
Model description
distilBERT base model fine-tuned for extractive Q&A. This model achieved an F1 score of 76.28 and EM score of 61.51 against SQUaD test set.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16755, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
Train Loss | Epoch |
---|---|
1.5389 | 0 |
0.9645 | 1 |
0.7523 | 2 |
Framework versions
- Transformers 4.34.0
- TensorFlow 2.13.0
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for t4ai/distilbert-finetuned-t3-qa
Base model
distilbert/distilbert-base-cased