test / config.json
taehoon1lee's picture
4th
d1c0d10
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f64382f4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f64382f4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f64382f4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f64382f4820>", "_build": "<function ActorCriticPolicy._build at 0x7f64382f48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f64382f4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f64382f49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f64382f4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f64382f4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f64382f4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f64382f4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f64382f4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f64382ef8a0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 30015488, "_total_timesteps": 30000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690724918561427173, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM2Er4aHns+e9PrPnNKL79ngiI85iGTPgAAAAAAAAAAZsqbPf5PnT7bVUu+t4Yov0ouED4zCUW+AAAAAAAAAABNEHK9yeA/PjhutTs+pgm/fEwGvjUu6LwAAAAAAAAAAMA7Ab4J6hQ/ZO+kPEpAPL/1JJK+ZgUXPgAAAAAAAAAA5pt3vcG1gT4Aft8976cxv7LUk7369ZY9AAAAAAAAAADNrHy6UvKWu8DK+TzgRyc9ltBYvCj3HjsAAIA/AACAP4C+AD0WcqM/1p1cPm5PHr++nZM9TSRGPgAAAAAAAAAAM/WaPOHelrrj8LO88lntN7fXJbuzdlK3AACAPwAAgD9TRC0++1fEPh4QZb5k+Tq/RUu/Pm3Fnr4AAAAAAAAAALORLb1w27s/G+78vi/YYz7NceS7GAshvgAAAAAAAAAA5oRhvULtaD/YxOK9htNjv16JXr2iJvC9AAAAAAAAAACaysY82MKcP1pFkz3RhC2/5EEfPoJwpT0AAAAAAAAAAADuVT1qaok+fqg2vkOIKL80SLI9M8xjvgAAAAAAAAAABmZHvm+eIT9IFF28dpwXv9LL5r5t4+I9AAAAAAAAAADAr3q+2zqZP5Zorb4WXCC/2Kslv8JZw70AAAAAAAAAALP6Gz3fZaA/a9ghPurhGb+7SA4++p5KPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMwW5paibmMAWyUS62MAXSUR0DRxaumygPFdX2UKGgGR0Bxs0B3iaRZaAdLt2gIR0DRxazPLPlddX2UKGgGR0BxJf9P1tfpaAdLoGgIR0DRxbGy/sVtdX2UKGgGR0BzUA/xDst1aAdLr2gIR0DRxbH/BFd+dX2UKGgGR0BzYEG1QZXNaAdLnmgIR0DRxbPqVyFPdX2UKGgGR0BzVOdqcmShaAdLsGgIR0DRxbq4tpVTdX2UKGgGR0Bw9PxqfvnbaAdLnWgIR0DRxcOqMm4RdX2UKGgGR0BzQkjPfKp2aAdLrWgIR0DRxc2us90SdX2UKGgGR0B0IGM0gr6MaAdLuWgIR0DRxdCzVtoBdX2UKGgGR0ByvyXpnpSraAdLrmgIR0DRxdFfzBhydX2UKGgGR0BycXK4hEBsaAdLqWgIR0DRxdJx4ptrdX2UKGgGR0By29EBsANoaAdLs2gIR0DRxdQp7TlUdX2UKGgGR0BxICBEroW6aAdLnmgIR0DRxdPRVp9JdX2UKGgGR0Bxzu5kK/mDaAdLoGgIR0DRxdYQFs55dX2UKGgGR0Bxp30ulGgBaAdLk2gIR0DRxddtgrpadX2UKGgGR0BysnQqqfe2aAdLmGgIR0DRxdentOVPdX2UKGgGR0ByYutzS1E3aAdLvmgIR0DRxdkVGkN4dX2UKGgGR0ByZiFDfFaTaAdLumgIR0DRxdnmdRR/dX2UKGgGR0Bx1QVGkN4JaAdLrGgIR0DRxeMtf5UMdX2UKGgGR0Bw/F38n/kvaAdLsmgIR0DRxeSqdYnwdX2UKGgGR0ByKEi3XqZ/aAdLrGgIR0DRxeWfthNNdX2UKGgGR0BwJXX18LKFaAdLk2gIR0DRxe0EgW8AdX2UKGgGR0Bx9s1R+BpYaAdLg2gIR0DRxfJprULEdX2UKGgGR0B0yWx2St/4aAdL1mgIR0DRxfpwo9cKdX2UKGgGR0BxuOhufmLcaAdLp2gIR0DRxgGZH/cWdX2UKGgGR0BxcNXLeQ+2aAdLpGgIR0DRxgF/EwWWdX2UKGgGR0BzCcidJ8OTaAdLpmgIR0DRxgM1DSgHdX2UKGgGR0ByNOEEkjX4aAdLm2gIR0DRxgPQQcxTdX2UKGgGR0Byg1H5JsfraAdLsmgIR0DRxgipBHCodX2UKGgGR0Byaa1kUbkwaAdLp2gIR0DRxgmkhzNmdX2UKGgGR0B0KPP6be/IaAdLtmgIR0DRxgpjawljdX2UKGgGR0BznzVoYekpaAdLsmgIR0DRxgzLKV6edX2UKGgGR0BykAr1/Ue/aAdLrGgIR0DRxg5mOEM9dX2UKGgGR0Bz9ObtqpLmaAdLrmgIR0DRxg4sqaw2dX2UKGgGR0Bx2MWCVbA2aAdLrmgIR0DRxhlUT+NtdX2UKGgGR0ByKRSQ5myxaAdLrmgIR0DRxhq59Vm0dX2UKGgGR0BynMzch1TzaAdLq2gIR0DRxhq4+bExdX2UKGgGR0ByEBtl7MPjaAdLpWgIR0DRxiCiJwbVdX2UKGgGR0BxLukEcKgJaAdLoGgIR0DRxiRlTWGzdX2UKGgGR0By0BJ17pmmaAdLiGgIR0DRxisnH/96dX2UKGgGR0Bw9iPwNLDiaAdLomgIR0DRxix/XoTxdX2UKGgGR0BykN4lhPTHaAdLoWgIR0DRxjUh/y5JdX2UKGgGR0BzdyOS4e90aAdLtGgIR0DRxjj0se4kdX2UKGgGR0ByEQqFyq+8aAdLsmgIR0DRxjoWepXIdX2UKGgGR0ByoA9ECvHMaAdLnWgIR0DRxjrFefI0dX2UKGgGR0Bw7KE384xUaAdLlGgIR0DRxjuJYT0ydX2UKGgGR0BywaRr8BMjaAdLm2gIR0DRxj4EOiFkdX2UKGgGR0BzcT6InBtUaAdLpGgIR0DRxj9P1tfpdX2UKGgGR0Bx/H2bobGWaAdLrGgIR0DRxj7U7Sy/dX2UKGgGR0Byhzafzz3AaAdLfmgIR0DRxkDdl/YrdX2UKGgGR0BynRn7HhjwaAdLvGgIR0DRxkLoTwlTdX2UKGgGR0BxmvcDbJwLaAdLhWgIR0DRxkRghKUWdX2UKGgGR0Bwbj9P1tfpaAdLiWgIR0DRxk3aews5dX2UKGgGR0Bxp4ihWYF8aAdLnGgIR0DRxlgCxNZedX2UKGgGR0Bzw92q1gIAaAdLu2gIR0DRxlf/n4fwdX2UKGgGR0BycnqeK8+SaAdLpWgIR0DRxmOKP4mDdX2UKGgGR0BzcPH3lCC0aAdLt2gIR0DRxmjq/ub7dX2UKGgGR0Bx12/7BO58aAdLjmgIR0DRxmsR5C4SdX2UKGgGR0BwwpvjwQUYaAdLpGgIR0DRxm2NaQmvdX2UKGgGR0BxV/zpX6qLaAdLh2gIR0DRxm457w8XdX2UKGgGR0Bxk55D7ZWaaAdLmWgIR0DRxm9P1tfpdX2UKGgGR0ByxB9nbqQjaAdLn2gIR0DRxm+WqtHQdX2UKGgGR0ByuaX0Gu9waAdLnWgIR0DRxnPdpItldX2UKGgGR0BzoD3g1m8NaAdLq2gIR0DRxnW3XqZ/dX2UKGgGR0BzSmk0rK/3aAdLrGgIR0DRxnkWl/H6dX2UKGgGR0Bxm3pt78ekaAdLoGgIR0DRxnlpoK2KdX2UKGgGR0Byn5UR3/xUaAdLwGgIR0DRxoCS5iEydX2UKGgGR0Bza1oFmnO0aAdLumgIR0DRxoJA9mpVdX2UKGgGR0BwankQwsXjaAdLnWgIR0DRxomdc0LudX2UKGgGR0BzrSlMyrPuaAdLu2gIR0DRxomSzPa+dX2UKGgGR0BzLfKT0QK8aAdLsmgIR0DRxpBmlImPdX2UKGgGR0ByNW1E3KjjaAdLiGgIR0DRxpfDej20dX2UKGgGR0Bw1P1WbPQfaAdLhmgIR0DRxpzmfXf7dX2UKGgGR0By3CxeLNwBaAdLuGgIR0DRxp2+Eh7mdX2UKGgGR0Bx7o9Mbm2caAdLomgIR0DRxp+eYlY2dX2UKGgGR0BvovRRdhRZaAdLqmgIR0DRxp/79AHFdX2UKGgGR0BxPLeO4oZyaAdLomgIR0DRxqGADq4ZdX2UKGgGR0By5WQxN7BwaAdLtGgIR0DRxqFAVwgldX2UKGgGR0Bwt3FNtZV5aAdLiGgIR0DRxqM9ZA6ddX2UKGgGR0BzdIwnH/96aAdLrmgIR0DRxqVSqEOBdX2UKGgGR0BwtTw6QvHtaAdLmWgIR0DRxqiG1x82dX2UKGgGR0By6SWRigCfaAdLsWgIR0DRxqsL5RCQdX2UKGgGR0ByWv8IiTt+aAdLkGgIR0DRxq4baRISdX2UKGgGR0BzIYa86FM7aAdLomgIR0DRxrH0btJGdX2UKGgGR0BwCqZw4sEraAdLk2gIR0DRxrcAiml7dX2UKGgGR0Bzo9hDw6QvaAdLsmgIR0DRxsMAksz3dX2UKGgGR0BxrZhMJx//aAdLlWgIR0DRxsdY/3WXdX2UKGgGR0Bya0lRgqmTaAdLs2gIR0DRxsngEU0vdX2UKGgGR0Bwk1OHnEEUaAdLjmgIR0DRxs0vQF9sdX2UKGgGR0B0ZPFdcB2faAdLomgIR0DRxtMGHHmzdX2UKGgGR0BxuzWy1NQCaAdLqWgIR0DRxtLIp6QedX2UKGgGR0BxQKTW5H3DaAdLl2gIR0DRxtNIK+i8dX2UKGgGR0Bxi90vGp++aAdLoWgIR0DRxtShzvJBdX2UKGgGR0Byc4Dq4YrKaAdLsWgIR0DRxtYWqLjxdX2UKGgGR0BzCs5lvqC6aAdLoGgIR0DRxtfjkuHvdX2UKGgGR0Bz+pEd/8VIaAdLvGgIR0DRxtuKsMiKdX2UKGgGR0BxxLb5/LDAaAdLpGgIR0DRxtu4d6sydX2UKGgGR0Bx2K/VRUFTaAdLpGgIR0DRxt6KHfuUdX2UKGgGR0ByQHFVDKHPaAdLo2gIR0DRxuELG7z1dX2UKGgGR0BwDGI68xsVaAdLm2gIR0DRxuJLDhtMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7328, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}