metadata
license: cc-by-nc-nd-4.0
datasets:
- taln-ls2n/Adminset
language:
- fr
library_name: transformers
tags:
- camembert
- BERT
- Administrative documents
AdminBERT 4GB: A Small French Language model adapted to Administrative documents
AdminBERT-4GB is a French language model adapted on a large corpus of 10 millions French administrative texts. It is a derivative of CamemBERT model, which is based on the RoBERTa architecture. AdminBERT-4GB is trained using the Whole Word Masking (WWM) objective with 30% mask rate for 2 epochs on 8 V100 GPUs. The dataset used for training is a sample of Adminset.
Evaluation
Model Performance
Model | P (%) | R (%) | F1 (%) |
---|---|---|---|
Wikineural-NER FT | 77.49 | 75.40 | 75.70 |
NERmemBERT-Large FT | 77.43 | 78.38 | 77.13 |
CamemBERT FT | 77.62 | 79.59 | 77.26 |
NERmemBERT-Base FT | 77.99 | 79.59 | 78.34 |
AdminBERT-NER 4GB | 78.47 | 80.35 | 79.26 |
AdminBERT-NER 16GB | 78.79 | 82.07 | 80.11 |
To evaluate each model, we performed five runs and averaged the results on the test set of Adminset-NER.