Edit model card

llama-3.2-3b-dpo-2

This model is a fine-tuned version of tanliboy/llama-3.2-3b-sft-2 on the HuggingFaceH4/orca_dpo_pairs and the HuggingFaceH4/ultrafeedback_binarized datasets. It achieves the following results on the evaluation set:

  • Loss: 0.5814
  • Rewards/chosen: 1.7432
  • Rewards/rejected: -4.1735
  • Rewards/accuracies: 0.7848
  • Rewards/margins: 5.9167
  • Logps/rejected: -388.2242
  • Logps/chosen: -338.5596
  • Logits/rejected: 0.2395
  • Logits/chosen: 0.1826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.7596 0.1741 100 0.7588 0.1349 -1.4398 0.6994 1.5747 -360.8871 -354.6434 0.6135 0.5482
0.6725 0.3483 200 0.6680 0.6247 -2.7323 0.7278 3.3569 -373.8118 -349.7451 0.5335 0.4718
0.6452 0.5224 300 0.6514 0.1770 -3.8036 0.75 3.9807 -384.5256 -354.2216 0.5477 0.4866
0.6259 0.6966 400 0.6328 0.9885 -3.5382 0.7722 4.5267 -381.8713 -346.1070 0.4531 0.3927
0.5709 0.8707 500 0.6219 0.9150 -4.0091 0.7816 4.9242 -386.5804 -346.8415 0.4148 0.3563
0.5835 1.0448 600 0.6094 1.5034 -3.6390 0.7722 5.1423 -382.8790 -340.9584 0.3504 0.2933
0.5571 1.2190 700 0.5992 1.5696 -3.7206 0.7690 5.2901 -383.6949 -340.2962 0.3217 0.2649
0.5532 1.3931 800 0.5954 1.7147 -3.7261 0.7785 5.4408 -383.7506 -338.8453 0.2961 0.2383
0.5168 1.5673 900 0.5930 1.9934 -3.3982 0.7753 5.3916 -380.4709 -336.0577 0.2838 0.2266
0.5232 1.7414 1000 0.5884 1.7308 -4.0024 0.7816 5.7332 -386.5127 -338.6839 0.2787 0.2220
0.5574 1.9155 1100 0.5849 1.8420 -3.9351 0.7911 5.7771 -385.8401 -337.5714 0.2706 0.2134
0.5077 2.0897 1200 0.5842 1.6188 -4.2472 0.7880 5.8659 -388.9607 -339.8043 0.2657 0.2083
0.4952 2.2638 1300 0.5837 1.9316 -3.8913 0.7816 5.8229 -385.4018 -336.6759 0.2694 0.2115
0.5236 2.4380 1400 0.5812 1.8289 -4.0636 0.7880 5.8925 -387.1253 -337.7025 0.2465 0.1895
0.5001 2.6121 1500 0.5814 1.7432 -4.1735 0.7848 5.9167 -388.2242 -338.5596 0.2395 0.1826
0.5246 2.7862 1600 0.5809 1.8622 -4.0120 0.7880 5.8742 -386.6093 -337.3701 0.2395 0.1825
0.5042 2.9604 1700 0.5808 1.8125 -4.0822 0.7880 5.8947 -387.3112 -337.8669 0.2355 0.1785

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
3.21B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tanliboy/llama-3.2-3b-dpo-2

Finetuned
(1)
this model

Datasets used to train tanliboy/llama-3.2-3b-dpo-2