dnabert2_ft_BioS73_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of vivym/DNABERT-2-117M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4759
  • F1 Score: 0.8097
  • Precision: 0.7215
  • Recall: 0.9225
  • Accuracy: 0.7685
  • Auc: 0.8751
  • Prc: 0.8761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.5511 0.1864 500 0.5573 0.7765 0.6445 0.9763 0.7000 0.8604 0.8624
0.5087 0.3727 1000 0.5165 0.7894 0.8206 0.7605 0.7835 0.8637 0.8656
0.5156 0.5591 1500 0.5062 0.8117 0.7655 0.8638 0.7861 0.8675 0.8683
0.5127 0.7454 2000 0.4772 0.8160 0.7645 0.875 0.7894 0.8679 0.8694
0.4991 0.9318 2500 0.5063 0.8103 0.7203 0.9260 0.7685 0.8712 0.8719
0.478 1.1182 3000 0.4569 0.8113 0.7422 0.8946 0.7779 0.8713 0.8723
0.4808 1.3045 3500 0.4585 0.8041 0.8086 0.7996 0.7920 0.8723 0.8738
0.4873 1.4909 4000 0.4672 0.8115 0.7297 0.9141 0.7734 0.8744 0.8761
0.4649 1.6772 4500 0.4759 0.8097 0.7215 0.9225 0.7685 0.8751 0.8761

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.20.0
Downloads last month
111
Safetensors
Model size
89.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for tanoManzo/dnabert2_ft_BioS73_1kbpHG19_DHSs_H3K27AC

Finetuned
(12)
this model