MMS-Adapter-Testing
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9386
- Wer: 0.6378
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.768 | 0.0150 | 100 | 2.1552 | 0.9390 |
2.3489 | 0.0299 | 200 | 1.1714 | 0.7209 |
1.7924 | 0.0449 | 300 | 1.1720 | 0.7586 |
1.7483 | 0.0598 | 400 | 1.0868 | 0.7237 |
1.8404 | 0.0748 | 500 | 1.0824 | 0.6963 |
1.8122 | 0.0897 | 600 | 1.0771 | 0.6866 |
1.7504 | 0.1047 | 700 | 1.0705 | 0.6970 |
1.6675 | 0.1196 | 800 | 1.0688 | 0.6913 |
1.6123 | 0.1346 | 900 | 1.0446 | 0.6888 |
1.6237 | 0.1495 | 1000 | 1.0586 | 0.7034 |
1.6714 | 0.1645 | 1100 | 1.0562 | 0.6866 |
1.8129 | 0.1795 | 1200 | 1.0363 | 0.6891 |
1.7839 | 0.1944 | 1300 | 1.0374 | 0.6631 |
1.7305 | 0.2094 | 1400 | 1.0211 | 0.6834 |
1.5496 | 0.2243 | 1500 | 1.0225 | 0.6856 |
1.5106 | 0.2393 | 1600 | 1.0387 | 0.7127 |
1.7517 | 0.2542 | 1700 | 1.0561 | 0.6898 |
1.7117 | 0.2692 | 1800 | 1.0303 | 0.6866 |
1.6854 | 0.2841 | 1900 | 1.0240 | 0.6888 |
1.5186 | 0.2991 | 2000 | 1.0207 | 0.6873 |
1.5631 | 0.3140 | 2100 | 0.9964 | 0.6677 |
1.6909 | 0.3290 | 2200 | 1.0090 | 0.6738 |
1.5698 | 0.3440 | 2300 | 1.0016 | 0.6809 |
1.6702 | 0.3589 | 2400 | 0.9996 | 0.6749 |
1.628 | 0.3739 | 2500 | 1.0074 | 0.6699 |
1.8025 | 0.3888 | 2600 | 1.0312 | 0.6934 |
1.5986 | 0.4038 | 2700 | 0.9871 | 0.6667 |
1.5687 | 0.4187 | 2800 | 0.9893 | 0.6567 |
1.6444 | 0.4337 | 2900 | 0.9943 | 0.6674 |
1.5869 | 0.4486 | 3000 | 0.9831 | 0.6706 |
1.443 | 0.4636 | 3100 | 1.0192 | 0.7045 |
1.569 | 0.4785 | 3200 | 0.9783 | 0.6635 |
1.5302 | 0.4935 | 3300 | 0.9898 | 0.6727 |
1.5879 | 0.5084 | 3400 | 0.9773 | 0.6670 |
1.5739 | 0.5234 | 3500 | 0.9837 | 0.6895 |
1.5684 | 0.5384 | 3600 | 0.9836 | 0.6667 |
1.6397 | 0.5533 | 3700 | 0.9673 | 0.6578 |
1.5639 | 0.5683 | 3800 | 0.9888 | 0.6599 |
1.6773 | 0.5832 | 3900 | 0.9788 | 0.6613 |
1.5069 | 0.5982 | 4000 | 0.9801 | 0.6542 |
1.4801 | 0.6131 | 4100 | 0.9587 | 0.6545 |
1.7308 | 0.6281 | 4200 | 0.9599 | 0.6706 |
1.4852 | 0.6430 | 4300 | 0.9728 | 0.6663 |
1.4654 | 0.6580 | 4400 | 0.9468 | 0.6417 |
1.801 | 0.6729 | 4500 | 0.9591 | 0.6556 |
2.0928 | 0.6879 | 4600 | 0.9857 | 0.6670 |
1.561 | 0.7029 | 4700 | 0.9550 | 0.6503 |
1.6623 | 0.7178 | 4800 | 0.9587 | 0.6524 |
1.5252 | 0.7328 | 4900 | 0.9551 | 0.6531 |
1.5539 | 0.7477 | 5000 | 0.9660 | 0.6513 |
1.5571 | 0.7627 | 5100 | 0.9557 | 0.6531 |
1.6584 | 0.7776 | 5200 | 0.9649 | 0.6563 |
1.5072 | 0.7926 | 5300 | 0.9604 | 0.6481 |
1.5362 | 0.8075 | 5400 | 0.9457 | 0.6314 |
1.4772 | 0.8225 | 5500 | 0.9491 | 0.6449 |
1.3731 | 0.8374 | 5600 | 0.9609 | 0.6478 |
1.5795 | 0.8524 | 5700 | 0.9568 | 0.6567 |
1.4013 | 0.8674 | 5800 | 0.9457 | 0.6406 |
1.5817 | 0.8823 | 5900 | 0.9437 | 0.6513 |
1.4211 | 0.8973 | 6000 | 0.9433 | 0.6381 |
1.4341 | 0.9122 | 6100 | 0.9420 | 0.6353 |
1.4818 | 0.9272 | 6200 | 0.9407 | 0.6456 |
1.5241 | 0.9421 | 6300 | 0.9400 | 0.6381 |
1.575 | 0.9571 | 6400 | 0.9374 | 0.6392 |
1.5232 | 0.9720 | 6500 | 0.9385 | 0.6364 |
1.8634 | 0.9870 | 6600 | 0.9386 | 0.6378 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for tanvirsaad/MMS-Adapter-Testing
Base model
facebook/mms-1b-all