See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2-1.5B-Instruct
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- 08ec668de316da63_train_data.json
ds_type: json
format: custom
path: 08ec668de316da63_train_data.json
type:
field: null
field_input: gpt4_explanations
field_instruction: context
field_output: outcome
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: taopanda/928d4ca8-4a97-4153-89aa-154e530c039e
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-4_5278df65-1c64-4339-b5d2-a63ecd76c3dc
pad_to_sequence_len: null
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
seed: 37948
sequence_len: 2048
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-4_5278df65-1c64-4339-b5d2-a63ecd76c3dc
wandb_project: subnet56
wandb_runid: taopanda-4_5278df65-1c64-4339-b5d2-a63ecd76c3dc
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
928d4ca8-4a97-4153-89aa-154e530c039e
This model is a fine-tuned version of Qwen/Qwen2-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7489
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 37948
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.3893 | 0.0018 | 1 | 4.6057 |
0.8959 | 0.5005 | 271 | 0.7867 |
1.0378 | 1.0009 | 542 | 0.7506 |
0.5071 | 1.5014 | 813 | 0.7489 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for taopanda/928d4ca8-4a97-4153-89aa-154e530c039e
Base model
Qwen/Qwen2-1.5B-Instruct