|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mamba_text_classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mamba_text_classification |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2292 |
|
- 1: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} |
|
- 4: {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2} |
|
- 5: {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} |
|
- 6: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} |
|
- 9: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} |
|
- 10: {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} |
|
- Accuracy: 0.9091 |
|
- Macro avg: {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11} |
|
- Weighted avg: {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | 0 | 1 | 4 | 5 | 6 | 9 | 10 | Accuracy | Macro avg | Weighted avg | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------:|:----------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:-------------------------------------------------------------------------------:|:----------------------------------------------------------------:|:----------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:| |
|
| 1.0038 | 0.4 | 459 | 0.7923 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 0} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 0.6666666666666666, 'f1-score': 0.8, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.8182 | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6571428571428571, 'support': 11} | {'precision': 0.8484848484848484, 'recall': 0.8181818181818182, 'f1-score': 0.8181818181818182, 'support': 11} | |
|
| 1.0341 | 0.8 | 918 | 0.0965 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11}| {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11} | |
|
| 0.0006 | 1.2 | 1377 | 0.1084 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} | |
|
| 0.1193 | 1.6 | 1836 | 0.7853 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} | |
|
| 0.007 | 2.0 | 2295 | 0.0076 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 1.0 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11}| {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 11} | |
|
| 0.0001 | 2.4 | 2754 | 0.3204 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} | |
|
| 0.0001 | 2.8 | 3213 | 0.0948 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} | |
|
| 0.0001 | 3.2 | 3672 | 0.1412 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} | |
|
| 0.0 | 3.6 | 4131 | 0.2292 | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}| {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 1} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 3} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2} | 0.9091 | {'precision': 0.7777777777777777, 'recall': 0.8333333333333334, 'f1-score': 0.7999999999999999, 'support': 11}| {'precision': 0.8484848484848484, 'recall': 0.9090909090909091, 'f1-score': 0.8727272727272727, 'support': 11} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.15.2 |
|
|