File size: 6,948 Bytes
6fa48df
 
c598fc3
 
18dcce4
 
 
 
32e199d
 
 
6eab3ec
 
 
 
6fa48df
 
 
 
523ff4d
 
b15ab2d
4ccde54
b15ab2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32e199d
 
4ccde54
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
library_name: transformers
base_model:
- answerdotai/ModernBERT-base
license: apache-2.0
language:
- en
pipeline_tag: zero-shot-classification
datasets:
- nyu-mll/glue
- facebook/anli
tags:
- instruct
- natural-language-inference
- nli
---

# Model Card for Model ID

ModernBERT fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI...).

Test accuracy at 10k training steps (current version, 100k steps incoming at the end of the week).

| test_name                            |   test_accuracy |
|:-------------------------------------|----------------:|
| glue/mnli                            |            0.82 |
| glue/qnli                            |            0.84 |
| glue/rte                             |            0.78 |
| super_glue/cb                        |            0.75 |
| anli/a1                              |            0.51 |
| anli/a2                              |            0.39 |
| anli/a3                              |            0.38 |
| sick/label                           |            0.91 |
| sick/entailment_AB                   |            0.81 |
| snli                                 |            0.82 |
| scitail/snli_format                  |            0.94 |
| hans                                 |            0.99 |
| WANLI                                |            0.7  |
| recast/recast_ner                    |            0.84 |
| recast/recast_kg_relations           |            0.89 |
| recast/recast_puns                   |            0.78 |
| recast/recast_verbcorner             |            0.87 |
| recast/recast_sentiment              |            0.97 |
| recast/recast_verbnet                |            0.74 |
| recast/recast_factuality             |            0.88 |
| recast/recast_megaveridicality       |            0.86 |
| probability_words_nli/reasoning_2hop |            0.76 |
| probability_words_nli/reasoning_1hop |            0.84 |
| probability_words_nli/usnli          |            0.7  |
| nan-nli                              |            0.62 |
| nli_fever                            |            0.71 |
| breaking_nli                         |            0.98 |
| conj_nli                             |            0.66 |
| fracas                               |            0    |
| dialogue_nli                         |            0.84 |
| mpe                                  |            0.69 |
| dnc                                  |            0.81 |
| recast_white/fnplus                  |            0.6  |
| recast_white/sprl                    |            0.83 |
| recast_white/dpr                     |            0.57 |
| robust_nli/IS_CS                     |            0.45 |
| robust_nli/LI_LI                     |            0.92 |
| robust_nli/ST_WO                     |            0.66 |
| robust_nli/PI_SP                     |            0.53 |
| robust_nli/PI_CD                     |            0.54 |
| robust_nli/ST_SE                     |            0.58 |
| robust_nli/ST_NE                     |            0.52 |
| robust_nli/ST_LM                     |            0.47 |
| robust_nli_is_sd                     |            0.99 |
| robust_nli_li_ts                     |            0.81 |
| add_one_rte                          |            0.87 |
| cycic_classification                 |            0.62 |
| lingnli                              |            0.73 |
| monotonicity-entailment              |            0.84 |
| scinli                               |            0.65 |
| naturallogic                         |            0.77 |
| syntactic-augmentation-nli           |            0.87 |
| autotnli                             |            0.83 |
| defeasible-nli/atomic                |            0.72 |
| defeasible-nli/snli                  |            0.67 |
| help-nli                             |            0.72 |
| nli-veridicality-transitivity        |            0.92 |
| lonli                                |            0.88 |
| dadc-limit-nli                       |            0.59 |
| folio                                |            0.44 |
| tomi-nli                             |            0.52 |
| temporal-nli                         |            0.62 |
| counterfactually-augmented-snli      |            0.69 |
| cnli                                 |            0.71 |
| logiqa-2.0-nli                       |            0.51 |
| mindgames                            |            0.83 |
| ConTRoL-nli                          |            0.49 |
| logical-fallacy                      |            0.13 |
| conceptrules_v2                      |            0.97 |
| zero-shot-label-nli                  |            0.67 |
| scone                                |            0.79 |
| monli                                |            0.76 |
| SpaceNLI                             |            0.89 |
| propsegment/nli                      |            0.82 |
| SDOH-NLI                             |            0.98 |
| scifact_entailment                   |            0.52 |
| AdjectiveScaleProbe-nli              |            0.91 |
| resnli                               |            0.97 |
| semantic_fragments_nli               |            0.91 |
| dataset_train_nli                    |            0.81 |
| ruletaker                            |            0.69 |
| PARARULE-Plus                        |            1    |
| logical-entailment                   |            0.53 |
| nope                                 |            0.36 |
| LogicNLI                             |            0.34 |
| contract-nli/contractnli_a/seg       |            0.79 |
| contract-nli/contractnli_b/full      |            0.67 |
| nli4ct_semeval2024                   |            0.53 |
| biosift-nli                          |            0.85 |
| SIGA-nli                             |            0.46 |
| FOL-nli                              |            0.49 |
| doc-nli                              |            0.81 |
| mctest-nli                           |            0.84 |
| idioms-nli                           |            0.77 |
| lifecycle-entailment                 |            0.57 |
| MSciNLI                              |            0.65 |
| babi_nli                             |            0.77 |
| gen_debiased_nli                     |            0.82 |


```
@inproceedings{sileo-2024-tasksource,
    title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
    author = "Sileo, Damien",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.1361",
    pages = "15655--15684",
}
```