File size: 8,014 Bytes
6fa48df c598fc3 18dcce4 32e199d 6eab3ec 6fa48df 97bdc54 523ff4d b15ab2d 4ccde54 b15ab2d 32e199d 54d2faf 97bdc54 54d2faf 4ccde54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
library_name: transformers
base_model:
- answerdotai/ModernBERT-base
license: apache-2.0
language:
- en
pipeline_tag: zero-shot-classification
datasets:
- nyu-mll/glue
- facebook/anli
tags:
- instruct
- natural-language-inference
- nli
---
# Model Card for Model ID
ModernBERT multi-task fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI and all datasets in the below table).
This is the equivalent of an "instruct" version.
Test accuracy at 10k training steps (current version, 100k steps incoming at the end of the week).
| test_name | test_accuracy |
|:-------------------------------------|----------------:|
| glue/mnli | 0.82 |
| glue/qnli | 0.84 |
| glue/rte | 0.78 |
| super_glue/cb | 0.75 |
| anli/a1 | 0.51 |
| anli/a2 | 0.39 |
| anli/a3 | 0.38 |
| sick/label | 0.91 |
| sick/entailment_AB | 0.81 |
| snli | 0.82 |
| scitail/snli_format | 0.94 |
| hans | 0.99 |
| WANLI | 0.7 |
| recast/recast_ner | 0.84 |
| recast/recast_kg_relations | 0.89 |
| recast/recast_puns | 0.78 |
| recast/recast_verbcorner | 0.87 |
| recast/recast_sentiment | 0.97 |
| recast/recast_verbnet | 0.74 |
| recast/recast_factuality | 0.88 |
| recast/recast_megaveridicality | 0.86 |
| probability_words_nli/reasoning_2hop | 0.76 |
| probability_words_nli/reasoning_1hop | 0.84 |
| probability_words_nli/usnli | 0.7 |
| nan-nli | 0.62 |
| nli_fever | 0.71 |
| breaking_nli | 0.98 |
| conj_nli | 0.66 |
| fracas | 0 |
| dialogue_nli | 0.84 |
| mpe | 0.69 |
| dnc | 0.81 |
| recast_white/fnplus | 0.6 |
| recast_white/sprl | 0.83 |
| recast_white/dpr | 0.57 |
| robust_nli/IS_CS | 0.45 |
| robust_nli/LI_LI | 0.92 |
| robust_nli/ST_WO | 0.66 |
| robust_nli/PI_SP | 0.53 |
| robust_nli/PI_CD | 0.54 |
| robust_nli/ST_SE | 0.58 |
| robust_nli/ST_NE | 0.52 |
| robust_nli/ST_LM | 0.47 |
| robust_nli_is_sd | 0.99 |
| robust_nli_li_ts | 0.81 |
| add_one_rte | 0.87 |
| cycic_classification | 0.62 |
| lingnli | 0.73 |
| monotonicity-entailment | 0.84 |
| scinli | 0.65 |
| naturallogic | 0.77 |
| syntactic-augmentation-nli | 0.87 |
| autotnli | 0.83 |
| defeasible-nli/atomic | 0.72 |
| defeasible-nli/snli | 0.67 |
| help-nli | 0.72 |
| nli-veridicality-transitivity | 0.92 |
| lonli | 0.88 |
| dadc-limit-nli | 0.59 |
| folio | 0.44 |
| tomi-nli | 0.52 |
| temporal-nli | 0.62 |
| counterfactually-augmented-snli | 0.69 |
| cnli | 0.71 |
| logiqa-2.0-nli | 0.51 |
| mindgames | 0.83 |
| ConTRoL-nli | 0.49 |
| logical-fallacy | 0.13 |
| conceptrules_v2 | 0.97 |
| zero-shot-label-nli | 0.67 |
| scone | 0.79 |
| monli | 0.76 |
| SpaceNLI | 0.89 |
| propsegment/nli | 0.82 |
| SDOH-NLI | 0.98 |
| scifact_entailment | 0.52 |
| AdjectiveScaleProbe-nli | 0.91 |
| resnli | 0.97 |
| semantic_fragments_nli | 0.91 |
| dataset_train_nli | 0.81 |
| ruletaker | 0.69 |
| PARARULE-Plus | 1 |
| logical-entailment | 0.53 |
| nope | 0.36 |
| LogicNLI | 0.34 |
| contract-nli/contractnli_a/seg | 0.79 |
| contract-nli/contractnli_b/full | 0.67 |
| nli4ct_semeval2024 | 0.53 |
| biosift-nli | 0.85 |
| SIGA-nli | 0.46 |
| FOL-nli | 0.49 |
| doc-nli | 0.81 |
| mctest-nli | 0.84 |
| idioms-nli | 0.77 |
| lifecycle-entailment | 0.57 |
| MSciNLI | 0.65 |
| babi_nli | 0.77 |
| gen_debiased_nli | 0.82 |
# Usage
## [ZS] Zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",model="tasksource/ModernBERT-base-nli")
text = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(text, candidate_labels)
```
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
## [NLI] Natural language inference pipeline
```python
from transformers import pipeline
pipe = pipeline("text-classification",model="tasksource/ModernBERT-base-nli")
pipe([dict(text='there is a cat',
text_pair='there is a black cat')]) #list of (premise,hypothesis)
```
## Backbone for further fune-tuning
This checkpoint has stronger reasoning and fine-grained abilities than the base version and can be used for further fine-tuning.
# Citation
```
@inproceedings{sileo-2024-tasksource,
title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
author = "Sileo, Damien",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1361",
pages = "15655--15684",
}
``` |