ModernBERT-base-nli / README.md
sileod's picture
Update README.md
a21a54c verified
|
raw
history blame
8.12 kB
---
library_name: transformers
base_model:
- answerdotai/ModernBERT-base
license: apache-2.0
language:
- en
pipeline_tag: zero-shot-classification
datasets:
- nyu-mll/glue
- facebook/anli
tags:
- instruct
- natural-language-inference
- nli
---
# Model Card for Model ID
ModernBERT multi-task fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI and all datasets in the below table).
This is the equivalent of an "instruct" version.
Test accuracy at 100k training steps. 250k steps version coming around 25 december.
| test_name | test_accuracy |
|:-------------------------------------|----------------:|
| glue/mnli | 0.91 |
| glue/qnli | 0.93 |
| glue/rte | 0.86 |
| super_glue/cb | 0.89 |
| anli/a1 | 0.62 |
| anli/a2 | 0.47 |
| anli/a3 | 0.42 |
| sick/label | 0.92 |
| sick/entailment_AB | 0.84 |
| snli | 0.91 |
| scitail/snli_format | 0.95 |
| hans | 1 |
| WANLI | 0.71 |
| recast/recast_sentiment | 0.98 |
| recast/recast_verbcorner | 0.94 |
| recast/recast_ner | 0.87 |
| recast/recast_factuality | 0.93 |
| recast/recast_puns | 0.93 |
| recast/recast_kg_relations | 0.94 |
| recast/recast_verbnet | 0.88 |
| recast/recast_megaveridicality | 0.87 |
| probability_words_nli/usnli | 0.77 |
| probability_words_nli/reasoning_1hop | 0.99 |
| probability_words_nli/reasoning_2hop | 0.9 |
| nan-nli | 0.85 |
| nli_fever | 0.72 |
| breaking_nli | 1 |
| conj_nli | 0.71 |
| fracas | 0.86 |
| dialogue_nli | 0.88 |
| mpe | 0.73 |
| dnc | 0.9 |
| recast_white/fnplus | 0.81 |
| recast_white/sprl | 0.92 |
| recast_white/dpr | 0.61 |
| robust_nli/IS_CS | 0.76 |
| robust_nli/LI_LI | 0.98 |
| robust_nli/ST_WO | 0.85 |
| robust_nli/PI_SP | 0.74 |
| robust_nli/PI_CD | 0.8 |
| robust_nli/ST_SE | 0.78 |
| robust_nli/ST_NE | 0.86 |
| robust_nli/ST_LM | 0.81 |
| robust_nli_is_sd | 1 |
| robust_nli_li_ts | 0.91 |
| add_one_rte | 0.91 |
| cycic_classification | 0.83 |
| lingnli | 0.82 |
| monotonicity-entailment | 0.95 |
| scinli | 0.79 |
| naturallogic | 0.91 |
| syntactic-augmentation-nli | 0.95 |
| autotnli | 0.92 |
| defeasible-nli/atomic | 0.76 |
| defeasible-nli/snli | 0.79 |
| help-nli | 0.91 |
| nli-veridicality-transitivity | 0.99 |
| lonli | 0.99 |
| dadc-limit-nli | 0.67 |
| folio | 0.59 |
| tomi-nli | 0.53 |
| temporal-nli | 0.92 |
| counterfactually-augmented-snli | 0.74 |
| cnli | 0.81 |
| logiqa-2.0-nli | 0.57 |
| mindgames | 0.94 |
| ConTRoL-nli | 0.65 |
| logical-fallacy | 0.31 |
| conceptrules_v2 | 0.99 |
| zero-shot-label-nli | 0.74 |
| scone | 0.97 |
| monli | 0.98 |
| SpaceNLI | 1 |
| propsegment/nli | 0.91 |
| SDOH-NLI | 1 |
| scifact_entailment | 0.78 |
| AdjectiveScaleProbe-nli | 0.99 |
| resnli | 0.99 |
| semantic_fragments_nli | 0.99 |
| dataset_train_nli | 0.88 |
| ruletaker | 0.91 |
| PARARULE-Plus | 1 |
| logical-entailment | 0.73 |
| nope | 0.54 |
| LogicNLI | 0.65 |
| contract-nli/contractnli_a/seg | 0.87 |
| contract-nli/contractnli_b/full | 0.78 |
| nli4ct_semeval2024 | 0.6 |
| biosift-nli | 0.88 |
| SIGA-nli | 0.54 |
| FOL-nli | 0.71 |
| doc-nli | 0.82 |
| mctest-nli | 0.89 |
| idioms-nli | 0.86 |
| lifecycle-entailment | 0.71 |
| MSciNLI | 0.82 |
| hover-3way/nli | 0.9 |
| seahorse_summarization_evaluation | 0.82 |
| babi_nli | 0.94 |
| gen_debiased_nli | 0.9 |
# Usage
## [ZS] Zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",model="tasksource/ModernBERT-base-nli")
text = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(text, candidate_labels)
```
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
## [NLI] Natural language inference pipeline
```python
from transformers import pipeline
pipe = pipeline("text-classification",model="tasksource/ModernBERT-base-nli")
pipe([dict(text='there is a cat',
text_pair='there is a black cat')]) #list of (premise,hypothesis)
```
## Backbone for further fune-tuning
This checkpoint has stronger reasoning and fine-grained abilities than the base version and can be used for further fine-tuning.
# Citation
```
@inproceedings{sileo-2024-tasksource,
title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
author = "Sileo, Damien",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1361",
pages = "15655--15684",
}
```