How to use🦙:

import torch
import bitsandbytes as bnb
from peft import PeftModel, PeftConfig, prepare_model_for_int8_training, LoraConfig, get_peft_model
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

peft_model_id = "tbboukhari/Alpaca_instruction_fine_tune_French"
config = PeftConfig.from_pretrained(peft_model_id)

tokenizer = LlamaTokenizer.from_pretrained(config.base_model_name_or_path)
model = LlamaForCausalLM.from_pretrained(config.base_model_name_or_path,
                                          load_in_8bit=True,
                                          device_map="auto",)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)

# Based on the inference code by `tloen/alpaca-lora`
def generate_prompt(instruction, entree=None):
    if entree :
        return f"""Vous trouverez ci-dessous des instructions décrivant une tâche, ainsi qu'une entrée qui fournit plus de contexte. Rédigez une réponse qui complète convenablement la demande.
### instructions:
{instruction}
### entrée:
{entree}
### sortie:"""

    else:
        return f"""Vous trouverez ci-dessous des instructions décrivant une tâche, ainsi qu'une entrée qui fournit plus de contexte. Rédigez une réponse qui complète convenablement la demande.

### instructions:
{instruction}
### sortie:"""

# Inputs to instantiate the model:
generation_config = GenerationConfig(
    temperature=0.2,
    top_p=0.75,
    num_beams=4,
)
# Evaluate the model:
def evaluate(instruction, input=None):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].cuda()
    generation_output = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
        return_dict_in_generate=True,
        output_scores=True,
        max_new_tokens=256
    )
    for s in generation_output.sequences:
        output = tokenizer.decode(s)
        print("sortie:", output.split("### sortie:")[1].strip())

evaluate(input("instructions: "))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train tbboukhari/Alpaca_instruction_fine_tune_French