tf-allociné
A french sentiment analysis model, based on CamemBERT, and finetuned on a large-scale dataset scraped from Allociné.fr user reviews.
Results
Validation Accuracy | Validation F1-Score | Test Accuracy | Test F1-Score |
---|---|---|---|
97.39 | 97.36 | 97.44 | 97.34 |
The dataset and the evaluation code are available on this repo.
Usage
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("tblard/tf-allocine")
model = TFAutoModelForSequenceClassification.from_pretrained("tblard/tf-allocine")
nlp = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
print(nlp("Alad'2 est clairement le meilleur film de l'année 2018.")) # POSITIVE
print(nlp("Juste whoaaahouuu !")) # POSITIVE
print(nlp("NUL...A...CHIER ! FIN DE TRANSMISSION.")) # NEGATIVE
print(nlp("Je m'attendais à mieux de la part de Franck Dubosc !")) # NEGATIVE
Author
Théophile Blard – :email: theophile.blard@gmail.com
If you use this work (code, model or dataset), please cite as:
Théophile Blard, French sentiment analysis with BERT, (2020), GitHub repository, https://github.com/TheophileBlard/french-sentiment-analysis-with-bert
- Downloads last month
- 1,036
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.