metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: fluency-scorer
results: []
fluency-scorer
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3830
- F1: 0.8183
- Accuracy: 0.8212
- Precision: 0.8171
- Recall: 0.8212
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 0.7214 | 0.5368 | 0.5168 | 0.6201 | 0.5168 |
0.5801 | 1.0 | 6158 | 0.4019 | 0.8069 | 0.8092 | 0.8056 | 0.8092 |
0.4354 | 2.0 | 12316 | 0.3835 | 0.8176 | 0.8212 | 0.8165 | 0.8212 |
0.4089 | 3.0 | 18474 | 0.3830 | 0.8183 | 0.8212 | 0.8171 | 0.8212 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.21.0