tcapelle's picture
Training in progress, step 84
c8b6fba verified
|
raw
history blame
2.86 kB
metadata
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-360M
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
  - precision
  - recall
model-index:
  - name: toxicity-scorer-smollm2-360m-freeze
    results: []

toxicity-scorer-smollm2-360m-freeze

This model is a fine-tuned version of HuggingFaceTB/SmolLM2-360M on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2347
  • F1: 0.9013
  • Accuracy: 0.9033
  • Precision: 0.9006
  • Recall: 0.9033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy Precision Recall
No log 0 0 0.8130 0.5487 0.5049 0.6645 0.5049
0.2957 0.2340 5000 0.2896 0.8803 0.8841 0.8795 0.8841
0.2451 0.4680 10000 0.2443 0.8976 0.8995 0.8968 0.8995
0.2349 0.7020 15000 0.2383 0.8994 0.9020 0.8989 0.9020
0.2277 0.9360 20000 0.2363 0.9006 0.9027 0.8999 0.9027
0.2414 1.1700 25000 0.2352 0.9013 0.9035 0.9007 0.9035
0.2361 1.4040 30000 0.2349 0.9013 0.9035 0.9007 0.9035
0.2312 1.6380 35000 0.2348 0.9013 0.9033 0.9007 0.9033
0.2207 1.8720 40000 0.2348 0.9014 0.9035 0.9007 0.9035
0.2645 2.1060 45000 0.2347 0.9012 0.9033 0.9005 0.9033
0.2369 2.3399 50000 0.2347 0.9012 0.9033 0.9005 0.9033
0.2329 2.5739 55000 0.2347 0.9013 0.9034 0.9006 0.9034
0.2253 2.8079 60000 0.2347 0.9013 0.9033 0.9006 0.9033

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3