PyTorch
Serbian
Croatian
xlm-roberta
TeslaXLM / README.md
procesaur's picture
Update README.md
28e13c8 verified
|
raw
history blame
7.69 kB
---
license: cc-by-sa-4.0
datasets:
- procesaur/ZNANJE
- procesaur/STARS
- procesaur/Vikipedija
- procesaur/Vikizvornik
- jerteh/SrpELTeC
- procesaur/kisobran
language:
- sr
- hr
base_model:
- FacebookAI/xlm-roberta-large
---
<table style="width:100%;height:100%">
<tr>
<td colspan=2>
<h4><i class="highlight-container"><b class="highlight">TeslaXLM</b></i></h4>
</td>
</tr>
<tr style="width:100%;height:100%">
<td width=50%>
<p>Вишејезични модел, 561 милион параметара</p>
<p>Обучаван над корпусима српског и српскохрватског језика - 20 милијарди речи</p>
<p>Једнака подршка уноса на ћирилици и латиници!</p>
</td>
<td>
<p>Multilingual model, 561 million parameters</p>
<p>Trained on Serbian and Serbo-Croatian corpora - 20 billion words</p>
<p>Equal support for Cyrillic and Latin input!</p>
</td>
</tr>
</table>
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='te-sla/teslaXLM')
>>> unmasker("Kada bi čovek znao gde će pasti on bi<mask>.")
```
```python
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM
>>> from torch import LongTensor, no_grad
>>> from scipy import spatial
>>> tokenizer = AutoTokenizer.from_pretrained('te-sla/teslaXLM')
>>> model = AutoModelForMaskedLM.from_pretrained('te-sla/teslaXLM', output_hidden_states=True)
>>> x = " pas"
>>> y = " mačka"
>>> z = " svemir"
>>> tensor_x = LongTensor(tokenizer.encode(x, add_special_tokens=False)).unsqueeze(0)
>>> tensor_y = LongTensor(tokenizer.encode(y, add_special_tokens=False)).unsqueeze(0)
>>> tensor_z = LongTensor(tokenizer.encode(z, add_special_tokens=False)).unsqueeze(0)
>>> model.eval()
>>> with no_grad():
>>> vektor_x = model(input_ids=tensor_x).hidden_states[-1].squeeze()
>>> vektor_y = model(input_ids=tensor_y).hidden_states[-1].squeeze()
>>> vektor_z = model(input_ids=tensor_z).hidden_states[-1].squeeze()
>>> print(spatial.distance.cosine(vektor_x, vektor_y))
>>> print(spatial.distance.cosine(vektor_x, vektor_z))
```
<table style="width:100%;height:100%">
<tr>
<td width=50%>
<h5><i class="highlight-container"><b class="highlight">Евалуација XLMR модела за српски језик</b></i></h4>
</td>
<td>
<h5><i class="highlight-container"><b class="highlight">Serbian XLMR models evaluation results</b></i></h4>
</td>
</tr>
<tr colspan=2 style="width:100%;height:100%">
<td colspan=2 >
<img src="xlm-fm.png" class="cover" style="max-width:650px">
<img src="xlm-pr.png" class="cover" style="max-width:650px">
<img src="xlm-ds.png" class="cover" style="max-width:650px">
</td>
</tr>
</table>
<div class="inline-flex flex-col" style="line-height: 1.5;padding-right:50px">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Author</div>
<a href="https://huggingface.co/procesaur">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url(&#39;https://cdn-uploads.huggingface.co/production/uploads/1673534533167-63bc254fb8c61b8aa496a39b.jpeg?w=200&h=200&f=face&#39;)">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mihailo Škorić</div>
<div>
<a href="https://huggingface.co/procesaur">
<div style="text-align: center; font-size: 14px;">@procesaur</div>
</a>
</div>
</div>
</div>
<div class="inline-flex flex-col" style="line-height: 1.5;padding-right:50px">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Author</div>
<a href="https://huggingface.co/tanor">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url('https://cdn-avatars.huggingface.co/v1/production/uploads/6409d3d71ee054d66a673701/KTOOnCRS9NhpAMZIvLlU7.png?w=200&h=200&f=face')">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Saša Petalinkar</div>
<div>
<a href="https://huggingface.co/tanor">
<div style="text-align: center; font-size: 14px;">@tanor</div>
</a>
</div>
</div>
</div>
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Computation</div>
<a href="https://tesla.rgf.bg.ac.rs">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url(https://cdn-avatars.huggingface.co/v1/production/uploads/63bc254fb8c61b8aa496a39b/TfM_-sc8-b34ddfhHBGTA.png?w=200&h=200&f=face)">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">TESLA project</div>
<div>
<a href="https://huggingface.co/te-sla">
<div style="text-align: center; font-size: 14px;">@te-sla</div>
</a>
</div>
</div>
</div>
<br/>
## Cit.
```bibtex
@inproceedings{skoricxlm,
author = {Mihailo Škorić, Saša Petalinkar},
title = {New XLM-R-based language models for Serbian and Serbo-Croatian},
booktitle = {ARTIFICAL INTELLIGENCE CONFERENCE},
year = {2024},
address = {Belgrade}
publisher = {SASA, Belgrade},
url = {}
}
```
<br/>
<div id="zastava">
<div class="grb">
<img src="https://www.ai.gov.rs/img/logo_60x120-2.png" style="position:relative; left:30px; z-index:10; height:85px">
</div>
<table width=100% style="border:0px">
<tr style="background-color:#C6363C;width:100%;border:0px;height:30px"><td style="width:100vw"></td></tr>
<tr style="background-color:#0C4076;width:100%;border:0px;height:30px"><td></td></tr>
<tr style="background-color:#ffffff;width:100%;border:0px;height:30px"><td></td></tr>
</table>
</div>
<table style="width:100%;height:100%">
<tr style="width:100%;height:100%">
<td width=50%>
<p>Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA</p>
</td>
<td>
<p>This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA</p>
</td>
</tr>
</table>
<style>
.ffeat: {
color:red
}
.cover {
width: 100%;
margin-bottom: 5pt
}
.highlight-container, .highlight {
position: relative;
text-decoration:none
}
.highlight-container {
display: inline-block;
}
.highlight{
color:white;
text-transform:uppercase;
font-size: 16pt;
}
.highlight-container{
padding:5px 10px
}
.highlight-container:before {
content: " ";
display: block;
height: 100%;
width: 100%;
margin-left: 0px;
margin-right: 0px;
position: absolute;
background: #e80909;
transform: rotate(2deg);
top: -1px;
left: -1px;
border-radius: 20% 25% 20% 24%;
padding: 10px 18px 18px 10px;
}
div.grb, #zastava>table {
position:absolute;
top:0px;
left: 0px;
margin:0px
}
div.grb>img, #zastava>table{
margin:0px
}
#zastava {
position: relative;
margin-bottom:120px
}
p {
font-size:14pt
}
</style>