morriszms's picture
Upload folder using huggingface_hub
afd1ff5 verified
metadata
license: apache-2.0
datasets: We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs
language:
  - ko
pipeline_tag: text-generation
base_model: dddsaty/KoSOLAR-10.7B_DPO_Adapter_Attach
tags:
  - TensorBlock
  - GGUF
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

dddsaty/KoSOLAR-10.7B_DPO_Adapter_Attach - GGUF

This repo contains GGUF format model files for dddsaty/KoSOLAR-10.7B_DPO_Adapter_Attach.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
KoSOLAR-10.7B_DPO_Adapter_Attach-Q2_K.gguf Q2_K 3.768 GB smallest, significant quality loss - not recommended for most purposes
KoSOLAR-10.7B_DPO_Adapter_Attach-Q3_K_S.gguf Q3_K_S 4.387 GB very small, high quality loss
KoSOLAR-10.7B_DPO_Adapter_Attach-Q3_K_M.gguf Q3_K_M 4.882 GB very small, high quality loss
KoSOLAR-10.7B_DPO_Adapter_Attach-Q3_K_L.gguf Q3_K_L 5.306 GB small, substantial quality loss
KoSOLAR-10.7B_DPO_Adapter_Attach-Q4_0.gguf Q4_0 5.703 GB legacy; small, very high quality loss - prefer using Q3_K_M
KoSOLAR-10.7B_DPO_Adapter_Attach-Q4_K_S.gguf Q4_K_S 5.746 GB small, greater quality loss
KoSOLAR-10.7B_DPO_Adapter_Attach-Q4_K_M.gguf Q4_K_M 6.065 GB medium, balanced quality - recommended
KoSOLAR-10.7B_DPO_Adapter_Attach-Q5_0.gguf Q5_0 6.941 GB legacy; medium, balanced quality - prefer using Q4_K_M
KoSOLAR-10.7B_DPO_Adapter_Attach-Q5_K_S.gguf Q5_K_S 6.941 GB large, low quality loss - recommended
KoSOLAR-10.7B_DPO_Adapter_Attach-Q5_K_M.gguf Q5_K_M 7.128 GB large, very low quality loss - recommended
KoSOLAR-10.7B_DPO_Adapter_Attach-Q6_K.gguf Q6_K 8.257 GB very large, extremely low quality loss
KoSOLAR-10.7B_DPO_Adapter_Attach-Q8_0.gguf Q8_0 10.694 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/KoSOLAR-10.7B_DPO_Adapter_Attach-GGUF --include "KoSOLAR-10.7B_DPO_Adapter_Attach-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/KoSOLAR-10.7B_DPO_Adapter_Attach-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'