morriszms's picture
Upload folder using huggingface_hub
5502a34 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - text-generation
  - TensorBlock
  - GGUF
base_model: Felladrin/Llama-160M-Chat-v1
datasets:
  - ehartford/wizard_vicuna_70k_unfiltered
  - totally-not-an-llm/EverythingLM-data-V3
  - Open-Orca/SlimOrca-Dedup
  - databricks/databricks-dolly-15k
  - THUDM/webglm-qa
widget:
  - messages:
      - role: system
        content: You are a helpful assistant, who answers with empathy.
      - role: user
        content: Got a question for you!
      - role: assistant
        content: Sure! What's it?
      - role: user
        content: Why do you love cats so much!? 🐈
  - messages:
      - role: system
        content: You are a helpful assistant who answers user's questions with empathy.
      - role: user
        content: Who is Mona Lisa?
  - messages:
      - role: system
        content: You are a helpful assistant who provides concise responses.
      - role: user
        content: Heya!
      - role: assistant
        content: Hi! How may I help you today?
      - role: user
        content: >-
          I need to build a simple website. Where should I start learning about
          web development?
  - messages:
      - role: user
        content: >-
          Invited some friends to come home today. Give me some ideas for games
          to play with them!
  - messages:
      - role: system
        content: >-
          You are a helpful assistant who answers user's questions with details
          and curiosity.
      - role: user
        content: What are some potential applications for quantum computing?
  - messages:
      - role: system
        content: You are a helpful assistant who gives creative responses.
      - role: user
        content: Write the specs of a game about mages in a fantasy world.
  - messages:
      - role: system
        content: You are a helpful assistant who answers user's questions with details.
      - role: user
        content: Tell me about the pros and cons of social media.
  - messages:
      - role: system
        content: >-
          You are a helpful assistant who answers user's questions with
          confidence.
      - role: user
        content: What is a dog?
      - role: assistant
        content: >-
          A dog is a four-legged, domesticated animal that is a member of the
          class Mammalia, which includes all mammals. Dogs are known for their
          loyalty, playfulness, and ability to be trained for various tasks.
          They are also used for hunting, herding, and as service animals.
      - role: user
        content: What is the color of an apple?
inference:
  parameters:
    max_new_tokens: 250
    penalty_alpha: 0.5
    top_k: 4
    repetition_penalty: 1.01
model-index:
  - name: Llama-160M-Chat-v1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 24.74
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 35.29
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 26.13
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 44.16
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 51.3
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 15.75
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 3.17
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.01
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.17
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Felladrin/Llama-160M-Chat-v1 - GGUF

This repo contains GGUF format model files for Felladrin/Llama-160M-Chat-v1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
Llama-160M-Chat-v1-Q2_K.gguf Q2_K 0.066 GB smallest, significant quality loss - not recommended for most purposes
Llama-160M-Chat-v1-Q3_K_S.gguf Q3_K_S 0.075 GB very small, high quality loss
Llama-160M-Chat-v1-Q3_K_M.gguf Q3_K_M 0.080 GB very small, high quality loss
Llama-160M-Chat-v1-Q3_K_L.gguf Q3_K_L 0.085 GB small, substantial quality loss
Llama-160M-Chat-v1-Q4_0.gguf Q4_0 0.092 GB legacy; small, very high quality loss - prefer using Q3_K_M
Llama-160M-Chat-v1-Q4_K_S.gguf Q4_K_S 0.092 GB small, greater quality loss
Llama-160M-Chat-v1-Q4_K_M.gguf Q4_K_M 0.096 GB medium, balanced quality - recommended
Llama-160M-Chat-v1-Q5_0.gguf Q5_0 0.108 GB legacy; medium, balanced quality - prefer using Q4_K_M
Llama-160M-Chat-v1-Q5_K_S.gguf Q5_K_S 0.108 GB large, low quality loss - recommended
Llama-160M-Chat-v1-Q5_K_M.gguf Q5_K_M 0.110 GB large, very low quality loss - recommended
Llama-160M-Chat-v1-Q6_K.gguf Q6_K 0.125 GB very large, extremely low quality loss
Llama-160M-Chat-v1-Q8_0.gguf Q8_0 0.161 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Llama-160M-Chat-v1-GGUF --include "Llama-160M-Chat-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Llama-160M-Chat-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'