Text Generation
GGUF
English
TensorBlock
GGUF
Inference Endpoints
conversational
morriszms's picture
Upload folder using huggingface_hub
25aa8c3 verified
---
widget:
- messages:
- role: system
content: You are a career counselor. The user will provide you with an individual
looking for guidance in their professional life, and your task is to assist
them in determining what careers they are most suited for based on their skills,
interests, and experience. You should also conduct research into the various
options available, explain the job market trends in different industries, and
advice on which qualifications would be beneficial for pursuing particular fields.
- role: user
content: Hey friend!
- role: assistant
content: Hi! How may I help you?
- role: user
content: I am interested in developing a career in software engineering. What
would you recommend me to do?
- messages:
- role: system
content: You are a knowledgeable assistant. Help the user as much as you can.
- role: user
content: How to become smarter?
- messages:
- role: system
content: You are a helpful assistant who provides concise responses.
- role: user
content: Hi!
- role: assistant
content: Hello there! How may I help you?
- role: user
content: I need to cook a simple dinner. What ingredients should I prepare for?
- messages:
- role: system
content: You are a very creative assistant. User will give you a task, which you
should complete with all your knowledge.
- role: user
content: Write the novel story of an RPG game about group of survivor post apocalyptic
world.
inference:
parameters:
max_new_tokens: 256
temperature: 0.6
top_p: 0.95
top_k: 50
repetition_penalty: 1.2
base_model: frankenmerger/MiniLlama-1.8b-Chat-v0.1
license: apache-2.0
language:
- en
pipeline_tag: text-generation
datasets:
- Locutusque/Hercules-v3.0
- Locutusque/hyperion-v2.0
- argilla/OpenHermes2.5-dpo-binarized-alpha
tags:
- TensorBlock
- GGUF
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## frankenmerger/MiniLlama-1.8b-Chat-v0.1 - GGUF
This repo contains GGUF format model files for [frankenmerger/MiniLlama-1.8b-Chat-v0.1](https://huggingface.co/frankenmerger/MiniLlama-1.8b-Chat-v0.1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
<|system|>
{system_prompt}</s>
<|user|>
{prompt}</s>
<|assistant|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [MiniLlama-1.8b-Chat-v0.1-Q2_K.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q2_K.gguf) | Q2_K | 0.724 GB | smallest, significant quality loss - not recommended for most purposes |
| [MiniLlama-1.8b-Chat-v0.1-Q3_K_S.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q3_K_S.gguf) | Q3_K_S | 0.840 GB | very small, high quality loss |
| [MiniLlama-1.8b-Chat-v0.1-Q3_K_M.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q3_K_M.gguf) | Q3_K_M | 0.930 GB | very small, high quality loss |
| [MiniLlama-1.8b-Chat-v0.1-Q3_K_L.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q3_K_L.gguf) | Q3_K_L | 1.008 GB | small, substantial quality loss |
| [MiniLlama-1.8b-Chat-v0.1-Q4_0.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q4_0.gguf) | Q4_0 | 1.083 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [MiniLlama-1.8b-Chat-v0.1-Q4_K_S.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q4_K_S.gguf) | Q4_K_S | 1.090 GB | small, greater quality loss |
| [MiniLlama-1.8b-Chat-v0.1-Q4_K_M.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q4_K_M.gguf) | Q4_K_M | 1.145 GB | medium, balanced quality - recommended |
| [MiniLlama-1.8b-Chat-v0.1-Q5_0.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q5_0.gguf) | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [MiniLlama-1.8b-Chat-v0.1-Q5_K_S.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q5_K_S.gguf) | Q5_K_S | 1.311 GB | large, low quality loss - recommended |
| [MiniLlama-1.8b-Chat-v0.1-Q5_K_M.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q5_K_M.gguf) | Q5_K_M | 1.343 GB | large, very low quality loss - recommended |
| [MiniLlama-1.8b-Chat-v0.1-Q6_K.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q6_K.gguf) | Q6_K | 1.554 GB | very large, extremely low quality loss |
| [MiniLlama-1.8b-Chat-v0.1-Q8_0.gguf](https://huggingface.co/tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF/blob/main/MiniLlama-1.8b-Chat-v0.1-Q8_0.gguf) | Q8_0 | 2.012 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF --include "MiniLlama-1.8b-Chat-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/MiniLlama-1.8b-Chat-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```