TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

unsloth/Mistral-Nemo-Base-2407 - GGUF

This repo contains GGUF format model files for unsloth/Mistral-Nemo-Base-2407.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
Mistral-Nemo-Base-2407-Q2_K.gguf Q2_K 4.791 GB smallest, significant quality loss - not recommended for most purposes
Mistral-Nemo-Base-2407-Q3_K_S.gguf Q3_K_S 5.534 GB very small, high quality loss
Mistral-Nemo-Base-2407-Q3_K_M.gguf Q3_K_M 6.083 GB very small, high quality loss
Mistral-Nemo-Base-2407-Q3_K_L.gguf Q3_K_L 6.562 GB small, substantial quality loss
Mistral-Nemo-Base-2407-Q4_0.gguf Q4_0 7.072 GB legacy; small, very high quality loss - prefer using Q3_K_M
Mistral-Nemo-Base-2407-Q4_K_S.gguf Q4_K_S 7.120 GB small, greater quality loss
Mistral-Nemo-Base-2407-Q4_K_M.gguf Q4_K_M 7.477 GB medium, balanced quality - recommended
Mistral-Nemo-Base-2407-Q5_0.gguf Q5_0 8.519 GB legacy; medium, balanced quality - prefer using Q4_K_M
Mistral-Nemo-Base-2407-Q5_K_S.gguf Q5_K_S 8.519 GB large, low quality loss - recommended
Mistral-Nemo-Base-2407-Q5_K_M.gguf Q5_K_M 8.728 GB large, very low quality loss - recommended
Mistral-Nemo-Base-2407-Q6_K.gguf Q6_K 10.056 GB very large, extremely low quality loss
Mistral-Nemo-Base-2407-Q8_0.gguf Q8_0 13.022 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Mistral-Nemo-Base-2407-GGUF --include "Mistral-Nemo-Base-2407-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Mistral-Nemo-Base-2407-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
5
GGUF
Model size
12.2B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tensorblock/Mistral-Nemo-Base-2407-GGUF

Quantized
(4)
this model