morriszms's picture
Upload folder using huggingface_hub
1319e5f verified
metadata
license: apache-2.0
tags:
  - yi
  - moe
  - TensorBlock
  - GGUF
base_model: cloudyu/Mixtral_34Bx2_MoE_60B
model-index:
  - name: Mixtral_34Bx2_MoE_60B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 45.38
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 41.21
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 6.57
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.74
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 17.78
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 41.85
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=cloudyu/Mixtral_34Bx2_MoE_60B
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

cloudyu/Mixtral_34Bx2_MoE_60B - GGUF

This repo contains GGUF format model files for cloudyu/Mixtral_34Bx2_MoE_60B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
Mixtral_34Bx2_MoE_60B-Q2_K.gguf Q2_K 22.394 GB smallest, significant quality loss - not recommended for most purposes
Mixtral_34Bx2_MoE_60B-Q3_K_S.gguf Q3_K_S 26.318 GB very small, high quality loss
Mixtral_34Bx2_MoE_60B-Q3_K_M.gguf Q3_K_M 29.237 GB very small, high quality loss
Mixtral_34Bx2_MoE_60B-Q3_K_L.gguf Q3_K_L 31.768 GB small, substantial quality loss
Mixtral_34Bx2_MoE_60B-Q4_0.gguf Q4_0 34.334 GB legacy; small, very high quality loss - prefer using Q3_K_M
Mixtral_34Bx2_MoE_60B-Q4_K_S.gguf Q4_K_S 34.594 GB small, greater quality loss
Mixtral_34Bx2_MoE_60B-Q4_K_M.gguf Q4_K_M 36.661 GB medium, balanced quality - recommended
Mixtral_34Bx2_MoE_60B-Q5_0.gguf Q5_0 41.878 GB legacy; medium, balanced quality - prefer using Q4_K_M
Mixtral_34Bx2_MoE_60B-Q5_K_S.gguf Q5_K_S 41.878 GB large, low quality loss - recommended
Mixtral_34Bx2_MoE_60B-Q5_K_M.gguf Q5_K_M 43.077 GB large, very low quality loss - recommended
Mixtral_34Bx2_MoE_60B-Q6_K.gguf Q6_K 49.893 GB very large, extremely low quality loss
Mixtral_34Bx2_MoE_60B-Q8_0 Q8_0 0.959 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Mixtral_34Bx2_MoE_60B-GGUF --include "Mixtral_34Bx2_MoE_60B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Mixtral_34Bx2_MoE_60B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'