metadata
license: apache-2.0
datasets:
- allenai/dolma
- allenai/tulu-v2-sft-mixture
language:
- en
tags:
- TensorBlock
- GGUF
base_model: allenai/OLMo-7B-SFT-hf
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
allenai/OLMo-7B-SFT-hf - GGUF
This repo contains GGUF format model files for allenai/OLMo-7B-SFT-hf.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<|endoftext|><|user|>
{prompt}
<|assistant|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
OLMo-7B-SFT-hf-Q2_K.gguf | Q2_K | 2.619 GB | smallest, significant quality loss - not recommended for most purposes |
OLMo-7B-SFT-hf-Q3_K_S.gguf | Q3_K_S | 3.042 GB | very small, high quality loss |
OLMo-7B-SFT-hf-Q3_K_M.gguf | Q3_K_M | 3.392 GB | very small, high quality loss |
OLMo-7B-SFT-hf-Q3_K_L.gguf | Q3_K_L | 3.691 GB | small, substantial quality loss |
OLMo-7B-SFT-hf-Q4_0.gguf | Q4_0 | 3.929 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
OLMo-7B-SFT-hf-Q4_K_S.gguf | Q4_K_S | 3.960 GB | small, greater quality loss |
OLMo-7B-SFT-hf-Q4_K_M.gguf | Q4_K_M | 4.185 GB | medium, balanced quality - recommended |
OLMo-7B-SFT-hf-Q5_0.gguf | Q5_0 | 4.765 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
OLMo-7B-SFT-hf-Q5_K_S.gguf | Q5_K_S | 4.765 GB | large, low quality loss - recommended |
OLMo-7B-SFT-hf-Q5_K_M.gguf | Q5_K_M | 4.896 GB | large, very low quality loss - recommended |
OLMo-7B-SFT-hf-Q6_K.gguf | Q6_K | 5.652 GB | very large, extremely low quality loss |
OLMo-7B-SFT-hf-Q8_0.gguf | Q8_0 | 7.320 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/OLMo-7B-SFT-hf-GGUF --include "OLMo-7B-SFT-hf-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/OLMo-7B-SFT-hf-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'