metadata
license: cc-by-nc-4.0
language:
- ro
base_model: OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17
datasets:
- OpenLLM-Ro/ro_sft_alpaca
- OpenLLM-Ro/ro_sft_alpaca_gpt4
- OpenLLM-Ro/ro_sft_dolly
- OpenLLM-Ro/ro_sft_selfinstruct_gpt4
- OpenLLM-Ro/ro_sft_norobots
- OpenLLM-Ro/ro_sft_orca
- OpenLLM-Ro/ro_sft_camel
tags:
- TensorBlock
- GGUF
model-index:
- name: OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17
results:
- task:
type: text-generation
dataset:
name: RoMT-Bench
type: RoMT-Bench
metrics:
- type: Score
value: 4.99
name: Score
- type: Score
value: 5.46
name: First turn
- type: Score
value: 4.53
name: Second turn
- task:
type: text-generation
dataset:
name: RoCulturaBench
type: RoCulturaBench
metrics:
- type: Score
value: 3.38
name: Score
- task:
type: text-generation
dataset:
name: Romanian_Academic_Benchmarks
type: Romanian_Academic_Benchmarks
metrics:
- type: accuracy
value: 52.54
name: Average accuracy
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_arc_challenge
type: OpenLLM-Ro/ro_arc_challenge
metrics:
- type: accuracy
value: 50.41
name: Average accuracy
- type: accuracy
value: 47.47
name: 0-shot
- type: accuracy
value: 48.59
name: 1-shot
- type: accuracy
value: 50.3
name: 3-shot
- type: accuracy
value: 51.33
name: 5-shot
- type: accuracy
value: 52.36
name: 10-shot
- type: accuracy
value: 52.44
name: 25-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_mmlu
type: OpenLLM-Ro/ro_mmlu
metrics:
- type: accuracy
value: 51.61
name: Average accuracy
- type: accuracy
value: 50.01
name: 0-shot
- type: accuracy
value: 50.18
name: 1-shot
- type: accuracy
value: 53.13
name: 3-shot
- type: accuracy
value: 53.12
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_winogrande
type: OpenLLM-Ro/ro_winogrande
metrics:
- type: accuracy
value: 66.48
name: Average accuracy
- type: accuracy
value: 64.96
name: 0-shot
- type: accuracy
value: 67.09
name: 1-shot
- type: accuracy
value: 67.01
name: 3-shot
- type: accuracy
value: 66.85
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_hellaswag
type: OpenLLM-Ro/ro_hellaswag
metrics:
- type: accuracy
value: 60.27
name: Average accuracy
- type: accuracy
value: 59.99
name: 0-shot
- type: accuracy
value: 59.48
name: 1-shot
- type: accuracy
value: 60.14
name: 3-shot
- type: accuracy
value: 60.61
name: 5-shot
- type: accuracy
value: 61.12
name: 10-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_gsm8k
type: OpenLLM-Ro/ro_gsm8k
metrics:
- type: accuracy
value: 34.19
name: Average accuracy
- type: accuracy
value: 21.68
name: 1-shot
- type: accuracy
value: 38.21
name: 3-shot
- type: accuracy
value: 42.68
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_truthfulqa
type: OpenLLM-Ro/ro_truthfulqa
metrics:
- type: accuracy
value: 52.3
name: Average accuracy
- task:
type: text-generation
dataset:
name: LaRoSeDa_binary
type: LaRoSeDa_binary
metrics:
- type: macro-f1
value: 97.36
name: Average macro-f1
- type: macro-f1
value: 97.27
name: 0-shot
- type: macro-f1
value: 96.37
name: 1-shot
- type: macro-f1
value: 97.97
name: 3-shot
- type: macro-f1
value: 97.83
name: 5-shot
- task:
type: text-generation
dataset:
name: LaRoSeDa_multiclass
type: LaRoSeDa_multiclass
metrics:
- type: macro-f1
value: 67.55
name: Average macro-f1
- type: macro-f1
value: 63.95
name: 0-shot
- type: macro-f1
value: 66.89
name: 1-shot
- type: macro-f1
value: 68.16
name: 3-shot
- type: macro-f1
value: 71.19
name: 5-shot
- task:
type: text-generation
dataset:
name: LaRoSeDa_binary_finetuned
type: LaRoSeDa_binary_finetuned
metrics:
- type: macro-f1
value: 98.8
name: Average macro-f1
- task:
type: text-generation
dataset:
name: LaRoSeDa_multiclass_finetuned
type: LaRoSeDa_multiclass_finetuned
metrics:
- type: macro-f1
value: 88.28
name: Average macro-f1
- task:
type: text-generation
dataset:
name: WMT_EN-RO
type: WMT_EN-RO
metrics:
- type: bleu
value: 27.93
name: Average bleu
- type: bleu
value: 24.87
name: 0-shot
- type: bleu
value: 28.3
name: 1-shot
- type: bleu
value: 29.26
name: 3-shot
- type: bleu
value: 29.27
name: 5-shot
- task:
type: text-generation
dataset:
name: WMT_RO-EN
type: WMT_RO-EN
metrics:
- type: bleu
value: 13.21
name: Average bleu
- type: bleu
value: 3.69
name: 0-shot
- type: bleu
value: 5.45
name: 1-shot
- type: bleu
value: 19.92
name: 3-shot
- type: bleu
value: 23.8
name: 5-shot
- task:
type: text-generation
dataset:
name: WMT_EN-RO_finetuned
type: WMT_EN-RO_finetuned
metrics:
- type: bleu
value: 28.72
name: Average bleu
- task:
type: text-generation
dataset:
name: WMT_RO-EN_finetuned
type: WMT_RO-EN_finetuned
metrics:
- type: bleu
value: 40.86
name: Average bleu
- task:
type: text-generation
dataset:
name: XQuAD
type: XQuAD
metrics:
- type: exact_match
value: 43.66
name: Average exact_match
- type: f1
value: 63.7
name: Average f1
- task:
type: text-generation
dataset:
name: XQuAD_finetuned
type: XQuAD_finetuned
metrics:
- type: exact_match
value: 55.04
name: Average exact_match
- type: f1
value: 72.31
name: Average f1
- task:
type: text-generation
dataset:
name: STS
type: STS
metrics:
- type: spearman
value: 77.43
name: Average spearman
- type: pearson
value: 78.43
name: Average pearson
- task:
type: text-generation
dataset:
name: STS_finetuned
type: STS_finetuned
metrics:
- type: spearman
value: 87.25
name: Average spearman
- type: pearson
value: 87.79
name: Average pearson
- task:
type: text-generation
dataset:
name: XQuAD_EM
type: XQuAD_EM
metrics:
- type: exact_match
value: 23.36
name: 0-shot
- type: exact_match
value: 47.98
name: 1-shot
- type: exact_match
value: 51.85
name: 3-shot
- type: exact_match
value: 51.43
name: 5-shot
- task:
type: text-generation
dataset:
name: XQuAD_F1
type: XQuAD_F1
metrics:
- type: f1
value: 46.29
name: 0-shot
- type: f1
value: 67.4
name: 1-shot
- type: f1
value: 70.58
name: 3-shot
- type: f1
value: 70.53
name: 5-shot
- task:
type: text-generation
dataset:
name: STS_Spearman
type: STS_Spearman
metrics:
- type: spearman
value: 77.91
name: 1-shot
- type: spearman
value: 77.73
name: 3-shot
- type: spearman
value: 76.65
name: 5-shot
- task:
type: text-generation
dataset:
name: STS_Pearson
type: STS_Pearson
metrics:
- type: pearson
value: 78.03
name: 1-shot
- type: pearson
value: 78.74
name: 3-shot
- type: pearson
value: 78.53
name: 5-shot
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17 - GGUF
This repo contains GGUF format model files for OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<s>{system_prompt} [INST] {prompt} [/INST]
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
RoMistral-7b-Instruct-2024-05-17-Q2_K.gguf | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes |
RoMistral-7b-Instruct-2024-05-17-Q3_K_S.gguf | Q3_K_S | 3.165 GB | very small, high quality loss |
RoMistral-7b-Instruct-2024-05-17-Q3_K_M.gguf | Q3_K_M | 3.519 GB | very small, high quality loss |
RoMistral-7b-Instruct-2024-05-17-Q3_K_L.gguf | Q3_K_L | 3.822 GB | small, substantial quality loss |
RoMistral-7b-Instruct-2024-05-17-Q4_0.gguf | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
RoMistral-7b-Instruct-2024-05-17-Q4_K_S.gguf | Q4_K_S | 4.140 GB | small, greater quality loss |
RoMistral-7b-Instruct-2024-05-17-Q4_K_M.gguf | Q4_K_M | 4.368 GB | medium, balanced quality - recommended |
RoMistral-7b-Instruct-2024-05-17-Q5_0.gguf | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
RoMistral-7b-Instruct-2024-05-17-Q5_K_S.gguf | Q5_K_S | 4.998 GB | large, low quality loss - recommended |
RoMistral-7b-Instruct-2024-05-17-Q5_K_M.gguf | Q5_K_M | 5.131 GB | large, very low quality loss - recommended |
RoMistral-7b-Instruct-2024-05-17-Q6_K.gguf | Q6_K | 5.942 GB | very large, extremely low quality loss |
RoMistral-7b-Instruct-2024-05-17-Q8_0.gguf | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/RoMistral-7b-Instruct-2024-05-17-GGUF --include "RoMistral-7b-Instruct-2024-05-17-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/RoMistral-7b-Instruct-2024-05-17-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'