metadata
license: apache-2.0
datasets:
- stanfordnlp/SHP
- Anthropic/hh-rlhf
- OpenAssistant/oasst1
language:
- en
metrics:
- accuracy
tags:
- human feedback
- rlhf
- preferences
- alignment
- HALO
- halos
- dpo
- rl
- TensorBlock
- GGUF
base_model: ContextualAI/archangel_sft-dpo_pythia2-8b
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
ContextualAI/archangel_sft-dpo_pythia2-8b - GGUF
This repo contains GGUF format model files for ContextualAI/archangel_sft-dpo_pythia2-8b.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
archangel_sft-dpo_pythia2-8b-Q2_K.gguf | Q2_K | 1.086 GB | smallest, significant quality loss - not recommended for most purposes |
archangel_sft-dpo_pythia2-8b-Q3_K_S.gguf | Q3_K_S | 1.248 GB | very small, high quality loss |
archangel_sft-dpo_pythia2-8b-Q3_K_M.gguf | Q3_K_M | 1.478 GB | very small, high quality loss |
archangel_sft-dpo_pythia2-8b-Q3_K_L.gguf | Q3_K_L | 1.602 GB | small, substantial quality loss |
archangel_sft-dpo_pythia2-8b-Q4_0.gguf | Q4_0 | 1.600 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
archangel_sft-dpo_pythia2-8b-Q4_K_S.gguf | Q4_K_S | 1.613 GB | small, greater quality loss |
archangel_sft-dpo_pythia2-8b-Q4_K_M.gguf | Q4_K_M | 1.787 GB | medium, balanced quality - recommended |
archangel_sft-dpo_pythia2-8b-Q5_0.gguf | Q5_0 | 1.930 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
archangel_sft-dpo_pythia2-8b-Q5_K_S.gguf | Q5_K_S | 1.930 GB | large, low quality loss - recommended |
archangel_sft-dpo_pythia2-8b-Q5_K_M.gguf | Q5_K_M | 2.070 GB | large, very low quality loss - recommended |
archangel_sft-dpo_pythia2-8b-Q6_K.gguf | Q6_K | 2.282 GB | very large, extremely low quality loss |
archangel_sft-dpo_pythia2-8b-Q8_0.gguf | Q8_0 | 2.954 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/archangel_sft-dpo_pythia2-8b-GGUF --include "archangel_sft-dpo_pythia2-8b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/archangel_sft-dpo_pythia2-8b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'