metadata
language:
- en
license: apache-2.0
tags:
- gpt2
- dpo
- code
- TensorBlock
- GGUF
datasets:
- HuggingFaceH4/ultrachat_200k
- mlabonne/CodeLlama-2-20k
- Intel/orca_dpo_pairs
- Sharathhebbar24/Evol-Instruct-Code-80k-v1
- Sharathhebbar24/sql-create-context
pipeline_tag: text-generation
base_model: Sharathhebbar24/code_gpt2
model-index:
- name: code_gpt2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 23.29
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 30.99
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.03
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 40.6
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.25
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Sharathhebbar24/code_gpt2
name: Open LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Sharathhebbar24/code_gpt2 - GGUF
This repo contains GGUF format model files for Sharathhebbar24/code_gpt2.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
code_gpt2-Q2_K.gguf | Q2_K | 0.081 GB | smallest, significant quality loss - not recommended for most purposes |
code_gpt2-Q3_K_S.gguf | Q3_K_S | 0.090 GB | very small, high quality loss |
code_gpt2-Q3_K_M.gguf | Q3_K_M | 0.098 GB | very small, high quality loss |
code_gpt2-Q3_K_L.gguf | Q3_K_L | 0.102 GB | small, substantial quality loss |
code_gpt2-Q4_0.gguf | Q4_0 | 0.107 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
code_gpt2-Q4_K_S.gguf | Q4_K_S | 0.107 GB | small, greater quality loss |
code_gpt2-Q4_K_M.gguf | Q4_K_M | 0.113 GB | medium, balanced quality - recommended |
code_gpt2-Q5_0.gguf | Q5_0 | 0.122 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
code_gpt2-Q5_K_S.gguf | Q5_K_S | 0.122 GB | large, low quality loss - recommended |
code_gpt2-Q5_K_M.gguf | Q5_K_M | 0.127 GB | large, very low quality loss - recommended |
code_gpt2-Q6_K.gguf | Q6_K | 0.138 GB | very large, extremely low quality loss |
code_gpt2-Q8_0.gguf | Q8_0 | 0.178 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/code_gpt2-GGUF --include "code_gpt2-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/code_gpt2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'