wiki_hu_ner / README.md
terhdavid's picture
End of training
ccfc330
|
raw
history blame
2.4 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: wiki_hu_ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann
          type: wikiann
          config: hu
          split: validation
          args: hu
        metrics:
          - name: Precision
            type: precision
            value: 0.8669236159775753
          - name: Recall
            type: recall
            value: 0.8782479057219935
          - name: F1
            type: f1
            value: 0.872549019607843
          - name: Accuracy
            type: accuracy
            value: 0.9632061446977205

wiki_hu_ner

This model is a fine-tuned version of distilbert-base-uncased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1585
  • Precision: 0.8669
  • Recall: 0.8782
  • F1: 0.8725
  • Accuracy: 0.9632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2429 1.0 1250 0.1849 0.8047 0.8153 0.8100 0.9448
0.1371 2.0 2500 0.1505 0.8455 0.8577 0.8516 0.9576
0.0986 3.0 3750 0.1516 0.8520 0.8708 0.8613 0.9603
0.0695 4.0 5000 0.1500 0.8656 0.8745 0.8700 0.9624
0.0489 5.0 6250 0.1585 0.8669 0.8782 0.8725 0.9632

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3