|
--- |
|
license: creativeml-openrail-m |
|
base_model: "ptx0/pixart-900m-1024-ft-large" |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- simpletuner |
|
- full |
|
|
|
inference: true |
|
|
|
--- |
|
|
|
# pixart-900m-1024-ft |
|
|
|
This is a full rank finetune derived from [ptx0/pixart-900m-1024-ft-large](https://huggingface.co/ptx0/pixart-900m-1024-ft-large). |
|
|
|
|
|
|
|
The main validation prompt used during training was: |
|
|
|
``` |
|
ethnographic photography of teddy bear at a picnic, ears tucked behind a cozy hoodie looking darkly off to the stormy picnic skies |
|
``` |
|
|
|
## Validation settings |
|
- CFG: `4.5` |
|
- CFG Rescale: `0.0` |
|
- Steps: `25` |
|
- Sampler: `None` |
|
- Seed: `42` |
|
- Resolutions: `1024x1024,1344x768,916x1152` |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
|
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 4 |
|
- Training steps: 91000 |
|
- Learning rate: 1e-06 |
|
- Effective batch size: 192 |
|
- Micro-batch size: 24 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 8 |
|
- Prediction type: epsilon |
|
- Rescaled betas zero SNR: False |
|
- Optimizer: AdamW, stochastic bf16 |
|
- Precision: Pure BF16 |
|
- Xformers: Not used |
|
|
|
|
|
## Datasets |
|
|
|
### photo-concept-bucket |
|
- Repeats: 0 |
|
- Total number of images: ~567552 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.0 megapixels |
|
- Cropped: True |
|
- Crop style: random |
|
- Crop aspect: square |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
|
|
|
|
model_id = 'pixart-900m-1024-ft' |
|
prompt = 'ethnographic photography of teddy bear at a picnic, ears tucked behind a cozy hoodie looking darkly off to the stormy picnic skies' |
|
negative_prompt = 'blurry, cropped, ugly' |
|
pipeline = DiffusionPipeline.from_pretrained(model_id) |
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
|
|
|
prompt = "ethnographic photography of teddy bear at a picnic, ears tucked behind a cozy hoodie looking darkly off to the stormy picnic skies" |
|
negative_prompt = "blurry, cropped, ugly" |
|
|
|
pipeline = DiffusionPipeline.from_pretrained(model_id) |
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
|
image = pipeline( |
|
prompt=prompt, |
|
negative_prompt='blurry, cropped, ugly', |
|
num_inference_steps=25, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), |
|
width=1152, |
|
height=768, |
|
guidance_scale=4.5, |
|
guidance_rescale=0.0, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|