terzimert's picture
update model card README.md
84385c6
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: anercorpDataset_v2.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# anercorpDataset_v2.1
This model is a fine-tuned version of [CAMeL-Lab/bert-base-arabic-camelbert-mix-ner](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2755
- Precision: 0.7604
- Recall: 0.6878
- F1: 0.7223
- Accuracy: 0.9461
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.206 | 1.0 | 7057 | 0.2703 | 0.6971 | 0.6367 | 0.6655 | 0.9377 |
| 0.2036 | 2.0 | 14114 | 0.2438 | 0.7460 | 0.6756 | 0.7090 | 0.9449 |
| 0.1404 | 3.0 | 21171 | 0.2755 | 0.7604 | 0.6878 | 0.7223 | 0.9461 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3