Edit model card

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tessimago/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "Item 8, titled 'Financial Statements and Supplementary Data,' is followed by an index to these sections.",
    'What section follows Item 8 in the document?',
    "What is the total assets and shareholders' equity of Chubb Limited as of December 31, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7386
cosine_accuracy@3 0.8643
cosine_accuracy@5 0.8943
cosine_accuracy@10 0.9343
cosine_precision@1 0.7386
cosine_precision@3 0.2881
cosine_precision@5 0.1789
cosine_precision@10 0.0934
cosine_recall@1 0.7386
cosine_recall@3 0.8643
cosine_recall@5 0.8943
cosine_recall@10 0.9343
cosine_ndcg@10 0.8387
cosine_mrr@10 0.8078
cosine_map@100 0.8103

Information Retrieval

Metric Value
cosine_accuracy@1 0.7414
cosine_accuracy@3 0.8557
cosine_accuracy@5 0.8943
cosine_accuracy@10 0.9329
cosine_precision@1 0.7414
cosine_precision@3 0.2852
cosine_precision@5 0.1789
cosine_precision@10 0.0933
cosine_recall@1 0.7414
cosine_recall@3 0.8557
cosine_recall@5 0.8943
cosine_recall@10 0.9329
cosine_ndcg@10 0.8381
cosine_mrr@10 0.8076
cosine_map@100 0.8101

Information Retrieval

Metric Value
cosine_accuracy@1 0.7357
cosine_accuracy@3 0.85
cosine_accuracy@5 0.8814
cosine_accuracy@10 0.92
cosine_precision@1 0.7357
cosine_precision@3 0.2833
cosine_precision@5 0.1763
cosine_precision@10 0.092
cosine_recall@1 0.7357
cosine_recall@3 0.85
cosine_recall@5 0.8814
cosine_recall@10 0.92
cosine_ndcg@10 0.8286
cosine_mrr@10 0.7993
cosine_map@100 0.8028

Information Retrieval

Metric Value
cosine_accuracy@1 0.7143
cosine_accuracy@3 0.84
cosine_accuracy@5 0.87
cosine_accuracy@10 0.9129
cosine_precision@1 0.7143
cosine_precision@3 0.28
cosine_precision@5 0.174
cosine_precision@10 0.0913
cosine_recall@1 0.7143
cosine_recall@3 0.84
cosine_recall@5 0.87
cosine_recall@10 0.9129
cosine_ndcg@10 0.8154
cosine_mrr@10 0.7841
cosine_map@100 0.7876

Information Retrieval

Metric Value
cosine_accuracy@1 0.6771
cosine_accuracy@3 0.8086
cosine_accuracy@5 0.8371
cosine_accuracy@10 0.8857
cosine_precision@1 0.6771
cosine_precision@3 0.2695
cosine_precision@5 0.1674
cosine_precision@10 0.0886
cosine_recall@1 0.6771
cosine_recall@3 0.8086
cosine_recall@5 0.8371
cosine_recall@10 0.8857
cosine_ndcg@10 0.784
cosine_mrr@10 0.7514
cosine_map@100 0.7557

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 46.25 tokens
    • max: 512 tokens
    • min: 7 tokens
    • mean: 20.69 tokens
    • max: 42 tokens
  • Samples:
    positive anchor
    As of January 28, 2024, we held cash and cash equivalents of $2.2 billion. What was the total cash and cash equivalents held by the company as of January 28, 2024?
    Net cash used in financing activities amounted to $1,600 million in fiscal year 2023. What was the total net cash used in financing activities in fiscal year 2023?
    Item 8, titled 'Financial Statements and Supplementary Data,' is followed by an index to these sections. What section follows Item 8 in the document?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.5849 - - - - -
0.9746 12 - 0.7610 0.7799 0.7878 0.7254 0.7922
1.6244 20 0.6368 - - - - -
1.9492 24 - 0.7823 0.7974 0.8047 0.7515 0.8046
2.4365 30 0.4976 - - - - -
2.9239 36 - 0.7876 0.803 0.8096 0.754 0.8081
3.2487 40 0.3845 - - - - -
3.8985 48 - 0.7876 0.8028 0.8101 0.7557 0.8103
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tessimago/bge-base-financial-matryoshka

Finetuned
(249)
this model

Evaluation results