metadata
library_name: transformers
license: mit
base_model: obi/deid_roberta_i2b2
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: fine-tuned-model
results: []
fine-tuned-model
This model is a fine-tuned version of obi/deid_roberta_i2b2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2126
- Model Preparation Time: 0.0061
- Precision: 0.9143
- Recall: 0.9156
- F1: 0.9132
- Accuracy: 0.9156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|---|
0.4678 | 1.0 | 125 | 0.4248 | 0.0061 | 0.7737 | 0.8229 | 0.7836 | 0.8229 |
0.3877 | 2.0 | 250 | 0.4008 | 0.0061 | 0.7886 | 0.8282 | 0.8060 | 0.8282 |
0.3391 | 3.0 | 375 | 0.3132 | 0.0061 | 0.8213 | 0.8672 | 0.8389 | 0.8672 |
0.3091 | 4.0 | 500 | 0.3124 | 0.0061 | 0.8334 | 0.8597 | 0.8419 | 0.8597 |
0.2572 | 5.0 | 625 | 0.2570 | 0.0061 | 0.8675 | 0.8911 | 0.8739 | 0.8911 |
0.2368 | 6.0 | 750 | 0.2270 | 0.0061 | 0.8908 | 0.9084 | 0.8973 | 0.9084 |
0.2115 | 7.0 | 875 | 0.2219 | 0.0061 | 0.8960 | 0.9081 | 0.9017 | 0.9081 |
0.1949 | 8.0 | 1000 | 0.2325 | 0.0061 | 0.8993 | 0.9044 | 0.8991 | 0.9044 |
0.1843 | 9.0 | 1125 | 0.2218 | 0.0061 | 0.9035 | 0.9103 | 0.9059 | 0.9103 |
0.1691 | 10.0 | 1250 | 0.2126 | 0.0061 | 0.9143 | 0.9156 | 0.9132 | 0.9156 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 2.14.5
- Tokenizers 0.19.1