theekshana's picture
deid_roberta_medical_reports
25b12dc verified
metadata
library_name: transformers
license: mit
base_model: obi/deid_roberta_i2b2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: fine-tuned-model
    results: []

fine-tuned-model

This model is a fine-tuned version of obi/deid_roberta_i2b2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2126
  • Model Preparation Time: 0.0061
  • Precision: 0.9143
  • Recall: 0.9156
  • F1: 0.9132
  • Accuracy: 0.9156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Precision Recall F1 Accuracy
0.4678 1.0 125 0.4248 0.0061 0.7737 0.8229 0.7836 0.8229
0.3877 2.0 250 0.4008 0.0061 0.7886 0.8282 0.8060 0.8282
0.3391 3.0 375 0.3132 0.0061 0.8213 0.8672 0.8389 0.8672
0.3091 4.0 500 0.3124 0.0061 0.8334 0.8597 0.8419 0.8597
0.2572 5.0 625 0.2570 0.0061 0.8675 0.8911 0.8739 0.8911
0.2368 6.0 750 0.2270 0.0061 0.8908 0.9084 0.8973 0.9084
0.2115 7.0 875 0.2219 0.0061 0.8960 0.9081 0.9017 0.9081
0.1949 8.0 1000 0.2325 0.0061 0.8993 0.9044 0.8991 0.9044
0.1843 9.0 1125 0.2218 0.0061 0.9035 0.9103 0.9059 0.9103
0.1691 10.0 1250 0.2126 0.0061 0.9143 0.9156 0.9132 0.9156

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu124
  • Datasets 2.14.5
  • Tokenizers 0.19.1