SDXL-VAE-FP16-Fix
SDXL-VAE-FP16-Fix is the SDXL VAE*, but modified to run in fp16 precision without generating NaNs.
VAE | Decoding in float32 / bfloat16 precision |
Decoding in float16 precision |
---|---|---|
SDXL-VAE | ✅ | ⚠️ |
SDXL-VAE-FP16-Fix | ✅ | ✅ |
🧨 Diffusers Usage
Just load this checkpoint via AutoencoderKL
:
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.to("cuda")
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
refiner.to("cuda")
n_steps = 40
high_noise_frac = 0.7
prompt = "A majestic lion jumping from a big stone at night"
image = pipe(prompt=prompt, num_inference_steps=n_steps, denoising_end=high_noise_frac, output_type="latent").images
image = refiner(prompt=prompt, num_inference_steps=n_steps, denoising_start=high_noise_frac, image=image).images[0]
image
Details
SDXL-VAE generates NaNs in fp16 because the internal activation values are too big:
SDXL-VAE-FP16-Fix was created by finetuning the SDXL-VAE to:
- keep the final output the same, but
- make the internal activation values smaller, by
- scaling down weights and biases within the network
There are slight discrepancies between the output of SDXL-VAE-FP16-Fix and SDXL-VAE, but the decoded images should be close enough for most purposes.
* sdxl-vae-fp16-fix
is specifically based on SDXL-VAE (0.9), but it works with SDXL 1.0 too
- Downloads last month
- 13