distilhubert_multilabel_audioset_subset_50epochs
This model is a fine-tuned version of ntu-spml/distilhubert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1095
- Accuracy: 0.9813
- F1: 0.1445
- Precision: 0.2747
- Recall: 0.0980
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0904 | 1.0 | 257 | 0.0826 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0784 | 2.0 | 514 | 0.0808 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0816 | 3.0 | 771 | 0.0806 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0775 | 4.0 | 1028 | 0.0802 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0748 | 5.0 | 1285 | 0.0795 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0796 | 6.0 | 1542 | 0.0783 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0789 | 7.0 | 1799 | 0.0774 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0835 | 8.0 | 2056 | 0.0760 | 0.9839 | 0.0 | 0.0 | 0.0 |
0.0698 | 9.0 | 2313 | 0.0751 | 0.9839 | 0.0057 | 0.9048 | 0.0029 |
0.0715 | 10.0 | 2570 | 0.0738 | 0.9839 | 0.0170 | 0.6477 | 0.0086 |
0.0693 | 11.0 | 2827 | 0.0731 | 0.9839 | 0.0190 | 0.6809 | 0.0096 |
0.0665 | 12.0 | 3084 | 0.0732 | 0.9839 | 0.0202 | 0.6476 | 0.0103 |
0.0645 | 13.0 | 3341 | 0.0725 | 0.9838 | 0.0415 | 0.4675 | 0.0217 |
0.0633 | 14.0 | 3598 | 0.0724 | 0.9838 | 0.0479 | 0.4841 | 0.0252 |
0.0574 | 15.0 | 3855 | 0.0724 | 0.9836 | 0.0585 | 0.4066 | 0.0315 |
0.0608 | 16.0 | 4112 | 0.0731 | 0.9836 | 0.0614 | 0.4143 | 0.0332 |
0.0541 | 17.0 | 4369 | 0.0736 | 0.9836 | 0.0733 | 0.4263 | 0.0401 |
0.0554 | 18.0 | 4626 | 0.0738 | 0.9836 | 0.0712 | 0.4041 | 0.0390 |
0.0501 | 19.0 | 4883 | 0.0745 | 0.9836 | 0.0758 | 0.4233 | 0.0416 |
0.0533 | 20.0 | 5140 | 0.0759 | 0.9836 | 0.0788 | 0.4111 | 0.0436 |
0.0415 | 21.0 | 5397 | 0.0768 | 0.9836 | 0.0820 | 0.4131 | 0.0455 |
0.047 | 22.0 | 5654 | 0.0778 | 0.9835 | 0.0939 | 0.4079 | 0.0531 |
0.0451 | 23.0 | 5911 | 0.0797 | 0.9831 | 0.0979 | 0.3533 | 0.0568 |
0.0422 | 24.0 | 6168 | 0.0805 | 0.9829 | 0.1079 | 0.3408 | 0.0641 |
0.0419 | 25.0 | 6425 | 0.0823 | 0.9826 | 0.1106 | 0.3119 | 0.0672 |
0.0378 | 26.0 | 6682 | 0.0837 | 0.9826 | 0.1132 | 0.3167 | 0.0689 |
0.0439 | 27.0 | 6939 | 0.0858 | 0.9823 | 0.1231 | 0.3104 | 0.0767 |
0.0357 | 28.0 | 7196 | 0.0869 | 0.9828 | 0.1086 | 0.3352 | 0.0648 |
0.0375 | 29.0 | 7453 | 0.0882 | 0.9826 | 0.1157 | 0.3248 | 0.0704 |
0.0378 | 30.0 | 7710 | 0.0906 | 0.9826 | 0.1121 | 0.3159 | 0.0681 |
0.0355 | 31.0 | 7967 | 0.0923 | 0.9825 | 0.1179 | 0.3122 | 0.0727 |
0.0307 | 32.0 | 8224 | 0.0938 | 0.9825 | 0.1174 | 0.3137 | 0.0722 |
0.0293 | 33.0 | 8481 | 0.0948 | 0.9820 | 0.1298 | 0.2949 | 0.0832 |
0.0323 | 34.0 | 8738 | 0.0965 | 0.9819 | 0.1325 | 0.2942 | 0.0855 |
0.0271 | 35.0 | 8995 | 0.0972 | 0.9822 | 0.1314 | 0.3124 | 0.0832 |
0.0281 | 36.0 | 9252 | 0.0990 | 0.9818 | 0.1392 | 0.2949 | 0.0911 |
0.0254 | 37.0 | 9509 | 0.1003 | 0.9816 | 0.1362 | 0.2809 | 0.0899 |
0.0277 | 38.0 | 9766 | 0.1012 | 0.9820 | 0.1325 | 0.2995 | 0.0850 |
0.0263 | 39.0 | 10023 | 0.1025 | 0.9817 | 0.1437 | 0.2936 | 0.0951 |
0.0235 | 40.0 | 10280 | 0.1043 | 0.9820 | 0.1344 | 0.3005 | 0.0865 |
0.024 | 41.0 | 10537 | 0.1050 | 0.9816 | 0.1419 | 0.2860 | 0.0944 |
0.0256 | 42.0 | 10794 | 0.1057 | 0.9815 | 0.1382 | 0.2778 | 0.0920 |
0.0251 | 43.0 | 11051 | 0.1068 | 0.9816 | 0.1380 | 0.2846 | 0.0911 |
0.025 | 44.0 | 11308 | 0.1077 | 0.9815 | 0.1401 | 0.2806 | 0.0933 |
0.0235 | 45.0 | 11565 | 0.1083 | 0.9814 | 0.1434 | 0.2790 | 0.0965 |
0.0219 | 46.0 | 11822 | 0.1088 | 0.9813 | 0.1405 | 0.2712 | 0.0948 |
0.0222 | 47.0 | 12079 | 0.1088 | 0.9813 | 0.1443 | 0.2773 | 0.0975 |
0.023 | 48.0 | 12336 | 0.1093 | 0.9812 | 0.1452 | 0.2730 | 0.0989 |
0.0208 | 49.0 | 12593 | 0.1095 | 0.9813 | 0.1442 | 0.2749 | 0.0977 |
0.0211 | 50.0 | 12850 | 0.1095 | 0.9813 | 0.1445 | 0.2747 | 0.0980 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for thollmann/distilhubert_multilabel_audioset_subset_50epochs
Base model
ntu-spml/distilhubert