thomas0104's picture
Librarian Bot: Add base_model information to model (#1)
f1d1143
metadata
language:
  - zh
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-large-v2
model-index:
  - name: Whisper large-v2 nan-tw
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 nan-tw
          type: mozilla-foundation/common_voice_11_0
          config: nan-tw
          split: train
          args: nan-tw
        metrics:
          - type: wer
            value: 42.592995431803345
            name: Wer
          - type: cer
            value: 23.297031817211188
            name: Cer

Whisper large-v2 nan-tw

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 nan-tw dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7525
  • Wer: 42.5930
  • Cer: 23.2970

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.4781 1.04 1000 0.7256 52.4690 28.7583
0.1881 2.08 2000 0.7346 50.2067 26.6389
0.0429 3.13 3000 0.7094 45.3557 24.7811
0.0112 5.01 4000 0.7416 44.4203 24.6850
0.0011 6.05 5000 0.7525 42.5930 23.2970

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.2