distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0623
- Precision: 0.9245
- Recall: 0.9365
- F1: 0.9304
- Accuracy: 0.9834
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2377 | 1.0 | 878 | 0.0711 | 0.9176 | 0.9254 | 0.9215 | 0.9813 |
0.0514 | 2.0 | 1756 | 0.0637 | 0.9213 | 0.9346 | 0.9279 | 0.9831 |
0.031 | 3.0 | 2634 | 0.0623 | 0.9245 | 0.9365 | 0.9304 | 0.9834 |
Framework versions
- Transformers 4.12.0
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train thomaszz/distilbert-base-uncased-finetuned-ner
Evaluation results
- Precision on conll2003self-reported0.924
- Recall on conll2003self-reported0.936
- F1 on conll2003self-reported0.930
- Accuracy on conll2003self-reported0.983