Mistral_Sparse_refined_web_50p_cut_pre_mlp_cut_pre_attn_2024-03-24
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1460
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4669 | 0.01 | 25 | 2.6676 |
2.3645 | 0.02 | 50 | 2.6007 |
2.3355 | 0.02 | 75 | 2.5715 |
2.3828 | 0.03 | 100 | 2.5535 |
2.3401 | 0.04 | 125 | 2.5292 |
2.3527 | 0.05 | 150 | 2.5217 |
2.3829 | 0.06 | 175 | 2.4998 |
2.2761 | 0.07 | 200 | 2.4850 |
2.4218 | 0.07 | 225 | 2.4936 |
2.2971 | 0.08 | 250 | 2.4925 |
2.3207 | 0.09 | 275 | 2.4817 |
2.2992 | 0.1 | 300 | 2.4915 |
2.3897 | 0.11 | 325 | 2.4921 |
2.3127 | 0.12 | 350 | 2.4669 |
2.2856 | 0.12 | 375 | 2.4739 |
2.312 | 0.13 | 400 | 2.4699 |
2.2876 | 0.14 | 425 | 2.4651 |
2.2378 | 0.15 | 450 | 2.4591 |
2.2899 | 0.16 | 475 | 2.4741 |
2.3141 | 0.16 | 500 | 2.4618 |
2.2603 | 0.17 | 525 | 2.4650 |
2.2613 | 0.18 | 550 | 2.4635 |
2.3039 | 0.19 | 575 | 2.4709 |
2.3 | 0.2 | 600 | 2.4532 |
2.2806 | 0.21 | 625 | 2.4611 |
2.3565 | 0.21 | 650 | 2.4614 |
2.2878 | 0.22 | 675 | 2.4600 |
2.2105 | 0.23 | 700 | 2.4468 |
2.3047 | 0.24 | 725 | 2.4557 |
2.2744 | 0.25 | 750 | 2.4510 |
2.327 | 0.26 | 775 | 2.4459 |
2.3467 | 0.26 | 800 | 2.4419 |
2.3345 | 0.27 | 825 | 2.4455 |
2.227 | 0.28 | 850 | 2.4440 |
2.3044 | 0.29 | 875 | 2.4434 |
2.3411 | 0.3 | 900 | 2.4396 |
2.2335 | 0.3 | 925 | 2.4417 |
2.3237 | 0.31 | 950 | 2.4432 |
2.2669 | 0.32 | 975 | 2.4429 |
2.2561 | 0.33 | 1000 | 2.4428 |
2.2862 | 0.34 | 1025 | 2.4387 |
2.1977 | 0.35 | 1050 | 2.4380 |
2.2541 | 0.35 | 1075 | 2.4484 |
2.3078 | 0.36 | 1100 | 2.4425 |
2.2566 | 0.37 | 1125 | 2.4418 |
2.3104 | 0.38 | 1150 | 2.4454 |
2.296 | 0.39 | 1175 | 2.4415 |
2.2365 | 0.39 | 1200 | 2.4390 |
2.2823 | 0.4 | 1225 | 2.4484 |
2.3187 | 0.41 | 1250 | 2.4303 |
2.2503 | 0.42 | 1275 | 2.4351 |
2.236 | 0.43 | 1300 | 2.4436 |
2.2241 | 0.44 | 1325 | 2.4393 |
2.27 | 0.44 | 1350 | 2.4415 |
2.1327 | 0.45 | 1375 | 2.4449 |
2.2509 | 0.46 | 1400 | 2.4427 |
2.3235 | 0.47 | 1425 | 2.4279 |
2.2916 | 0.48 | 1450 | 2.4534 |
2.3007 | 0.49 | 1475 | 2.4388 |
2.2441 | 0.49 | 1500 | 2.4388 |
2.2449 | 0.5 | 1525 | 2.4383 |
2.2297 | 0.51 | 1550 | 2.4355 |
2.2189 | 0.52 | 1575 | 2.4314 |
2.2334 | 0.53 | 1600 | 2.4335 |
2.3038 | 0.53 | 1625 | 2.4378 |
2.281 | 0.54 | 1650 | 2.4230 |
2.3771 | 0.55 | 1675 | 2.4358 |
2.2954 | 0.56 | 1700 | 2.4272 |
2.3176 | 0.57 | 1725 | 2.4333 |
2.2551 | 0.58 | 1750 | 2.4320 |
2.2292 | 0.58 | 1775 | 2.4288 |
2.2678 | 0.59 | 1800 | 2.4316 |
2.2064 | 0.6 | 1825 | 2.4344 |
2.285 | 0.61 | 1850 | 2.4272 |
2.264 | 0.62 | 1875 | 2.4307 |
2.1799 | 0.63 | 1900 | 2.4237 |
2.2148 | 0.63 | 1925 | 2.4274 |
2.2222 | 0.64 | 1950 | 2.4223 |
2.2573 | 0.65 | 1975 | 2.4314 |
2.2688 | 0.66 | 2000 | 2.4256 |
2.1979 | 0.67 | 2025 | 2.4247 |
2.3255 | 0.67 | 2050 | 2.4345 |
2.3069 | 0.68 | 2075 | 2.4306 |
2.2678 | 0.69 | 2100 | 2.4222 |
2.2425 | 0.7 | 2125 | 2.4224 |
2.2997 | 0.71 | 2150 | 2.4245 |
2.255 | 0.72 | 2175 | 2.4259 |
2.3064 | 0.72 | 2200 | 2.4281 |
2.2634 | 0.73 | 2225 | 2.4202 |
2.2347 | 0.74 | 2250 | 2.4299 |
2.2811 | 0.75 | 2275 | 2.4240 |
2.309 | 0.76 | 2300 | 2.4264 |
2.2937 | 0.77 | 2325 | 2.4218 |
2.244 | 0.77 | 2350 | 2.4227 |
2.2088 | 0.78 | 2375 | 2.4216 |
2.2219 | 0.79 | 2400 | 2.4215 |
2.2195 | 0.8 | 2425 | 2.4149 |
2.3011 | 0.81 | 2450 | 2.4246 |
2.2774 | 0.81 | 2475 | 2.4246 |
2.1974 | 0.82 | 2500 | 2.4247 |
2.3793 | 0.83 | 2525 | 2.4267 |
2.3 | 0.84 | 2550 | 2.4219 |
2.2795 | 0.85 | 2575 | 2.4232 |
2.2487 | 0.86 | 2600 | 2.4230 |
2.3045 | 0.86 | 2625 | 2.4235 |
2.2968 | 0.87 | 2650 | 2.4285 |
2.2446 | 0.88 | 2675 | 2.4235 |
2.3246 | 0.89 | 2700 | 2.4223 |
2.3012 | 0.9 | 2725 | 2.4228 |
2.2852 | 0.91 | 2750 | 2.4247 |
2.2467 | 0.91 | 2775 | 2.4261 |
2.2133 | 0.92 | 2800 | 2.4202 |
2.1203 | 0.93 | 2825 | 2.4171 |
2.231 | 0.94 | 2850 | 2.4264 |
2.2386 | 0.95 | 2875 | 2.4249 |
2.2277 | 0.95 | 2900 | 2.4227 |
2.2708 | 0.96 | 2925 | 2.4327 |
2.3401 | 0.97 | 2950 | 2.4205 |
2.2068 | 0.98 | 2975 | 2.4287 |
2.3009 | 0.99 | 3000 | 2.4215 |
2.2744 | 1.0 | 3025 | 2.4289 |
2.1902 | 1.0 | 3050 | 2.4171 |
2.2535 | 1.01 | 3075 | 2.4273 |
2.3347 | 1.02 | 3100 | 2.4219 |
2.2299 | 1.03 | 3125 | 2.4338 |
2.2649 | 1.04 | 3150 | 2.4224 |
2.2959 | 1.04 | 3175 | 2.4262 |
2.3125 | 1.05 | 3200 | 2.4176 |
2.29 | 1.06 | 3225 | 2.4178 |
2.2887 | 1.07 | 3250 | 2.4214 |
2.2716 | 1.08 | 3275 | 2.4224 |
2.2285 | 1.09 | 3300 | 2.4155 |
2.2141 | 1.09 | 3325 | 2.4250 |
2.2393 | 1.1 | 3350 | 2.4221 |
2.2457 | 1.11 | 3375 | 2.4213 |
2.2702 | 1.12 | 3400 | 2.4153 |
2.244 | 1.13 | 3425 | 2.4178 |
2.2556 | 1.14 | 3450 | 2.4241 |
2.2327 | 1.14 | 3475 | 2.4258 |
2.2078 | 1.15 | 3500 | 2.4216 |
2.2766 | 1.16 | 3525 | 2.4258 |
2.2011 | 1.17 | 3550 | 2.4166 |
2.2338 | 1.18 | 3575 | 2.4213 |
2.2521 | 1.18 | 3600 | 2.4222 |
2.1923 | 1.19 | 3625 | 2.4221 |
2.1908 | 1.2 | 3650 | 2.4229 |
2.2142 | 1.21 | 3675 | 2.4215 |
2.3107 | 1.22 | 3700 | 2.4185 |
2.2513 | 1.23 | 3725 | 2.4188 |
2.1988 | 1.23 | 3750 | 2.4244 |
2.3081 | 1.24 | 3775 | 2.4214 |
2.2984 | 1.25 | 3800 | 2.4215 |
2.2241 | 1.26 | 3825 | 2.4165 |
2.2694 | 1.27 | 3850 | 2.4204 |
2.268 | 1.28 | 3875 | 2.4217 |
2.2311 | 1.28 | 3900 | 2.4223 |
2.2723 | 1.29 | 3925 | 2.4181 |
2.25 | 1.3 | 3950 | 2.4171 |
2.338 | 1.31 | 3975 | 2.4090 |
2.2806 | 1.32 | 4000 | 2.4174 |
2.1563 | 1.32 | 4025 | 2.4264 |
2.2137 | 1.33 | 4050 | 2.4270 |
2.2339 | 1.34 | 4075 | 2.4179 |
2.2593 | 1.35 | 4100 | 2.4187 |
2.2901 | 1.36 | 4125 | 2.4308 |
2.3096 | 1.37 | 4150 | 2.4230 |
2.3275 | 1.37 | 4175 | 2.4239 |
2.2729 | 1.38 | 4200 | 2.4238 |
2.3258 | 1.39 | 4225 | 2.4158 |
2.2342 | 1.4 | 4250 | 2.4250 |
2.2772 | 1.41 | 4275 | 2.4310 |
2.2495 | 1.42 | 4300 | 2.4178 |
2.2578 | 1.42 | 4325 | 2.4200 |
2.245 | 1.43 | 4350 | 2.4237 |
2.2206 | 1.44 | 4375 | 2.4288 |
2.1952 | 1.45 | 4400 | 2.4232 |
2.1864 | 1.46 | 4425 | 2.4265 |
2.221 | 1.46 | 4450 | 2.4237 |
2.2828 | 1.47 | 4475 | 2.4329 |
2.2533 | 1.48 | 4500 | 2.4143 |
2.2831 | 1.49 | 4525 | 2.4368 |
2.2538 | 1.5 | 4550 | 2.4305 |
2.2023 | 1.51 | 4575 | 2.4267 |
2.2467 | 1.51 | 4600 | 2.4217 |
2.2291 | 1.52 | 4625 | 2.4330 |
2.2284 | 1.53 | 4650 | 2.4244 |
2.2123 | 1.54 | 4675 | 2.4322 |
2.3115 | 1.55 | 4700 | 2.4216 |
2.2696 | 1.56 | 4725 | 2.4232 |
2.2189 | 1.56 | 4750 | 2.4234 |
2.2323 | 1.57 | 4775 | 2.4265 |
2.279 | 1.58 | 4800 | 2.4213 |
2.2401 | 1.59 | 4825 | 2.4227 |
2.2346 | 1.6 | 4850 | 2.4237 |
2.1738 | 1.6 | 4875 | 2.4226 |
2.2086 | 1.61 | 4900 | 2.4137 |
2.2422 | 1.62 | 4925 | 2.4225 |
2.2479 | 1.63 | 4950 | 2.4220 |
2.2511 | 1.64 | 4975 | 2.4221 |
2.2086 | 1.65 | 5000 | 2.4272 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support model that require custom code execution.
Model tree for thrunlab/Mistral_Sparse_refined_web_50p_cut_pre_mlp_cut_pre_attn_2024-03-24
Base model
mistralai/Mistral-7B-v0.1