t5-large_wic_dense_epochs-5
This model is a fine-tuned version of t5-large on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.7106
- Accuracy: 0.6599
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6058 | 2.35 | 50 | 0.7125 | 0.6176 |
0.4662 | 4.71 | 100 | 0.7054 | 0.6614 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for thrunlab/t5-large_wic_dense_epochs-5
Base model
google-t5/t5-largeDataset used to train thrunlab/t5-large_wic_dense_epochs-5
Evaluation results
- Accuracy on super_gluevalidation set self-reported0.660