nb-bert-base-user-needs
This model is a fine-tuned version of NbAiLab/nb-bert-base on a dataset of 2000 articles from Bergens Tidende, published between 06/01/2020 and 02/02/2020. These articles are labelled as one of six classes / user needs, as introduced by the BBC in 2017 It achieves the following results on the evaluation set:
- Loss: 1.0600
- Accuracy: 0.8479
- F1: 0.8319
- Precision: 0.8315
- Recall: 0.8479
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 98 | 1.1222 | 0.6263 | 0.5185 | 0.5076 | 0.6263 |
No log | 2.0 | 196 | 1.0066 | 0.7216 | 0.6436 | 0.5899 | 0.7216 |
No log | 3.0 | 294 | 0.8540 | 0.7577 | 0.7037 | 0.6760 | 0.7577 |
No log | 4.0 | 392 | 0.8621 | 0.7603 | 0.6998 | 0.6568 | 0.7603 |
No log | 5.0 | 490 | 0.8062 | 0.7887 | 0.7500 | 0.7449 | 0.7887 |
0.91 | 6.0 | 588 | 0.7465 | 0.8041 | 0.7660 | 0.7636 | 0.8041 |
0.91 | 7.0 | 686 | 0.6324 | 0.8247 | 0.8163 | 0.8187 | 0.8247 |
0.91 | 8.0 | 784 | 0.7333 | 0.7964 | 0.7703 | 0.7740 | 0.7964 |
0.91 | 9.0 | 882 | 0.6590 | 0.8325 | 0.8208 | 0.8106 | 0.8325 |
0.91 | 10.0 | 980 | 0.9854 | 0.8196 | 0.7890 | 0.7920 | 0.8196 |
0.4246 | 11.0 | 1078 | 0.7023 | 0.8247 | 0.8054 | 0.8138 | 0.8247 |
0.4246 | 12.0 | 1176 | 0.8995 | 0.8325 | 0.8120 | 0.8068 | 0.8325 |
0.4246 | 13.0 | 1274 | 0.8589 | 0.8299 | 0.8145 | 0.8058 | 0.8299 |
0.4246 | 14.0 | 1372 | 0.9859 | 0.8376 | 0.8151 | 0.8123 | 0.8376 |
0.4246 | 15.0 | 1470 | 0.8452 | 0.8402 | 0.8318 | 0.8341 | 0.8402 |
0.1637 | 16.0 | 1568 | 1.1156 | 0.8351 | 0.8157 | 0.8196 | 0.8351 |
0.1637 | 17.0 | 1666 | 1.1514 | 0.8325 | 0.8122 | 0.8218 | 0.8325 |
0.1637 | 18.0 | 1764 | 1.0092 | 0.8428 | 0.8266 | 0.8320 | 0.8428 |
0.1637 | 19.0 | 1862 | 1.0368 | 0.8351 | 0.8229 | 0.8287 | 0.8351 |
0.1637 | 20.0 | 1960 | 1.0600 | 0.8479 | 0.8319 | 0.8315 | 0.8479 |
0.0391 | 21.0 | 2058 | 1.1046 | 0.8428 | 0.8293 | 0.8269 | 0.8428 |
0.0391 | 22.0 | 2156 | 1.1178 | 0.8454 | 0.8262 | 0.8280 | 0.8454 |
0.0391 | 23.0 | 2254 | 1.1103 | 0.8428 | 0.8268 | 0.8295 | 0.8428 |
0.0391 | 24.0 | 2352 | 1.1179 | 0.8428 | 0.8274 | 0.8313 | 0.8428 |
0.0391 | 25.0 | 2450 | 1.1134 | 0.8402 | 0.8233 | 0.8254 | 0.8402 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for thusken/nb-bert-base-user-needs
Base model
NbAiLab/nb-bert-base