metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: Whisper tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 32.88075560802833
Whisper tiny
This model is a fine-tuned version of openai/whisper-tiny on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6734
- Wer Ortho: 32.6959
- Wer: 32.8808
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 8
- training_steps: 225
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
2.8035 | 0.25 | 14 | 0.7206 | 42.1345 | 40.4368 |
0.5469 | 0.5 | 28 | 0.5327 | 36.0888 | 36.3046 |
0.4968 | 0.75 | 42 | 0.5195 | 34.7933 | 34.7107 |
0.5012 | 1.0 | 56 | 0.5551 | 33.5595 | 33.7072 |
0.1879 | 1.25 | 70 | 0.5353 | 31.5854 | 31.4640 |
0.239 | 1.5 | 84 | 0.5303 | 37.4460 | 40.6139 |
0.2082 | 1.75 | 98 | 0.5565 | 31.0302 | 31.2279 |
0.2244 | 2.0 | 112 | 0.5540 | 28.5626 | 28.6305 |
0.0679 | 2.25 | 126 | 0.5759 | 28.5009 | 28.6305 |
0.0637 | 2.5 | 140 | 0.6192 | 50.7094 | 54.0732 |
0.072 | 2.75 | 154 | 0.6093 | 31.2770 | 30.9327 |
0.0506 | 3.0 | 168 | 0.6302 | 35.2869 | 35.5372 |
0.029 | 3.25 | 182 | 0.6299 | 33.4978 | 33.5891 |
0.0405 | 3.5 | 196 | 0.6159 | 30.1049 | 30.4014 |
0.022 | 3.75 | 210 | 0.6441 | 30.7218 | 30.9917 |
0.0332 | 4.0 | 224 | 0.6734 | 32.6959 | 32.8808 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1