whisper-tiny-en-US / README.md
thuyentruong's picture
Training in progress, step 14
e431e9b verified
|
raw
history blame
2.91 kB
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: Whisper tiny
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 32.88075560802833

Whisper tiny

This model is a fine-tuned version of openai/whisper-tiny on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6734
  • Wer Ortho: 32.6959
  • Wer: 32.8808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 8
  • training_steps: 225
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
2.8035 0.25 14 0.7206 42.1345 40.4368
0.5469 0.5 28 0.5327 36.0888 36.3046
0.4968 0.75 42 0.5195 34.7933 34.7107
0.5012 1.0 56 0.5551 33.5595 33.7072
0.1879 1.25 70 0.5353 31.5854 31.4640
0.239 1.5 84 0.5303 37.4460 40.6139
0.2082 1.75 98 0.5565 31.0302 31.2279
0.2244 2.0 112 0.5540 28.5626 28.6305
0.0679 2.25 126 0.5759 28.5009 28.6305
0.0637 2.5 140 0.6192 50.7094 54.0732
0.072 2.75 154 0.6093 31.2770 30.9327
0.0506 3.0 168 0.6302 35.2869 35.5372
0.029 3.25 182 0.6299 33.4978 33.5891
0.0405 3.5 196 0.6159 30.1049 30.4014
0.022 3.75 210 0.6441 30.7218 30.9917
0.0332 4.0 224 0.6734 32.6959 32.8808

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1