Edit model card

w2v-bert-2.0-pt_pt_v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_1 Portuguese subset using 1XRTX 3090. It achieves the following results on the test set:

  • Wer: 0.10491320595991134
  • Cer: 0.032070871626631914
  • Bert Score: 0.9619712047981167
  • Sentence Similarity: 0.93867844

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bert Score
1.2735 1.0 678 0.2292 0.1589 0.0415 0.9498
0.1715 2.0 1356 0.1762 0.1283 0.0344 0.9599
0.1158 3.0 2034 0.1539 0.1100 0.0298 0.9646
0.0821 4.0 2712 0.1362 0.0949 0.0258 0.9703
0.0605 5.0 3390 0.1349 0.0860 0.0236 0.9728
0.0475 6.0 4068 0.1395 0.0871 0.0239 0.9728
0.0355 7.0 4746 0.1487 0.0837 0.0230 0.9739
0.0309 8.0 5424 0.1452 0.0873 0.0240 0.9728
0.0308 9.0 6102 0.1390 0.0843 0.0228 0.9735
0.0239 10.0 6780 0.1282 0.0832 0.0224 0.9739

Evaluation results

Test Wer Test Cer Test Bert Score Runtime Samples per second
0.09146400542583083 0.02643665913309742 0.9702128323433327 266.8185 35.282

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tiagomosantos/w2v-bert-2.0-pt_pt_v2

Finetuned
(186)
this model

Evaluation results