ModernBERT-base-finetuned-pos
This model is a fine-tuned version of answerdotai/ModernBERT-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2935
- Precision: 0.9029
- Recall: 0.9158
- F1: 0.9093
- Accuracy: 0.9267
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6485 | 1.0 | 878 | 0.3352 | 0.8911 | 0.9007 | 0.8959 | 0.9159 |
0.1997 | 2.0 | 1756 | 0.2890 | 0.9031 | 0.9110 | 0.9070 | 0.9246 |
0.1274 | 3.0 | 2634 | 0.2935 | 0.9029 | 0.9158 | 0.9093 | 0.9267 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 49
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for tiennguyenbnbk/ModernBERT-base-finetuned-pos
Base model
answerdotai/ModernBERT-baseDataset used to train tiennguyenbnbk/ModernBERT-base-finetuned-pos
Evaluation results
- Precision on conll2003validation set self-reported0.903
- Recall on conll2003validation set self-reported0.916
- F1 on conll2003validation set self-reported0.909
- Accuracy on conll2003validation set self-reported0.927