promptcap-coco-vqa / README.md
yushihu's picture
Update README.md
a094e0c
|
raw
history blame
2.38 kB
metadata
license: openrail
inference: false
pipeline_tag: image-to-text
tags:
  - image-to-text
  - visual-question-answering
  - image-captioning
datasets:
  - coco
  - textvqa
  - VQAv2
  - OK-VQA
  - A-OKVQA
language:
  - en

QuickStart

Installation

pip install promptcap

Captioning Pipeline

Please follow the prompt format, which will give the best performance.

Generate a prompt-guided caption by following:

import torch
from promptcap import PromptCap

model = PromptCap("vqascore/promptcap-coco-vqa")  # also support OFA checkpoints. e.g. "OFA-Sys/ofa-large"

if torch.cuda.is_available():
  model.cuda()

prompt = "please describe this image according to the given question: what piece of clothing is this boy putting on?"
image = "glove_boy.jpeg"

print(model.caption(prompt, image))

To try generic captioning, just use "please describe this image according to the given question: what does the image describe?"

PromptCap also support taking OCR inputs:

prompt = "please describe this image according to the given question: what year was this taken?"
image = "dvds.jpg"
ocr = "yip AE Mht juor 02/14/2012"

print(model.caption(prompt, image, ocr))

Visual Question Answering Pipeline

Different from typical VQA models, which are doing classification on VQAv2, PromptCap is open-domain and can be paired with arbitrary text-QA models. Here we provide a pipeline for combining PromptCap with UnifiedQA.

import torch
from promptcap import PromptCap_VQA

# QA model support all UnifiedQA variants. e.g. "allenai/unifiedqa-v2-t5-large-1251000"
vqa_model = PromptCap_VQA(promptcap_model="vqascore/promptcap-coco-vqa", qa_model="allenai/unifiedqa-t5-base")

if torch.cuda.is_available():
  vqa_model.cuda()

question = "what piece of clothing is this boy putting on?"
image = "glove_boy.jpeg"

print(vqa_model.vqa(question, image))

Similarly, PromptCap supports OCR inputs

question = "what year was this taken?"
image = "dvds.jpg"
ocr = "yip AE Mht juor 02/14/2012"

print(vqa_model.vqa(question, image, ocr=ocr))

Because of the flexibility of Unifiedqa, PromptCap also supports multiple-choice VQA

question = "what piece of clothing is this boy putting on?"
image = "glove_boy.jpeg"
choices = ["gloves", "socks", "shoes", "coats"]
print(vqa_model.vqa_multiple_choice(question, image, choices))