Edit model card

alz-mri-vit

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2447
  • F1: 0.9086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
1.1101 1.0 64 0.9590 0.5549
0.9356 2.0 128 0.8877 0.5940
0.9187 3.0 192 0.9376 0.5272
0.8804 4.0 256 0.8667 0.5962
0.7854 5.0 320 0.7756 0.6720
0.7278 6.0 384 0.7202 0.6860
0.6462 7.0 448 0.7124 0.6898
0.5731 8.0 512 0.6027 0.7553
0.473 9.0 576 0.5520 0.7724
0.4378 10.0 640 0.5550 0.7758
0.4086 11.0 704 0.4366 0.8271
0.36 12.0 768 0.4446 0.8225
0.3217 13.0 832 0.3841 0.8441
0.2941 14.0 896 0.4719 0.8182
0.2679 15.0 960 0.4112 0.8410
0.2565 16.0 1024 0.3698 0.8527
0.2502 17.0 1088 0.3283 0.8810
0.2166 18.0 1152 0.3569 0.8627
0.197 19.0 1216 0.3475 0.8699
0.2004 20.0 1280 0.3171 0.8834
0.1722 21.0 1344 0.2711 0.8998
0.1529 22.0 1408 0.2432 0.9100
0.1495 23.0 1472 0.2950 0.8978
0.1307 24.0 1536 0.2811 0.9034
0.1278 25.0 1600 0.2545 0.9086
0.1175 26.0 1664 0.2561 0.9051
0.1264 27.0 1728 0.2128 0.9186
0.1015 28.0 1792 0.3022 0.9014
0.1077 29.0 1856 0.2403 0.9221
0.0932 30.0 1920 0.2447 0.9086

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tifosiai/vri-alzheirmer-classifier

Finetuned
(1691)
this model