Files changed (1) hide show
  1. README.md +36 -70
README.md CHANGED
@@ -1,64 +1,34 @@
1
-
2
  ---
3
  language:
4
  - en
5
  - fr
6
  - es
7
  - pt
8
- base_model:
9
- - tiiuae/Falcon3-10B-Instruct
10
- pipeline_tag: text-generation
11
- library_name: transformers
12
  tags:
13
  - falcon3
14
-
15
  ---
16
 
17
- <div align="center">
18
- <img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
19
- </div>
20
-
21
  # Falcon3-10B-Instruct-GGUF
22
 
 
 
 
 
 
 
23
 
24
- **Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
25
-
26
- **Falcon3-10B-Instruct** achieves state-of-the-art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
27
- Falcon3-10B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.
28
-
29
- This repository contains the GGUFs instruction-tuned 10B Falcon3 model.
30
-
31
- ## Model Details
32
- - Architecture
33
- - Transformer-based causal decoder-only architecture
34
- - 40 decoder blocks
35
- - Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
36
- - Wider head dimension: 256
37
- - High RoPE value to support long context understanding: 1000042
38
- - Uses SwiGLu and RMSNorm
39
- - 32K context length
40
- - 131K vocab size
41
- - Depth up-scaled from **Falcon3-7B-Base** with 2 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
42
- - Posttrained on 1.2 million samples of STEM, conversational, code, safety and function call data
43
- - Supports EN, FR, ES, PT
44
- - Developed by [Technology Innovation Institute](https://www.tii.ae)
45
- - License: TII Falcon-LLM License 2.0
46
- - Model Release Date: December 2024
47
- - Quantization: q2_K, q3_K_M, q4_0, q4_K_M, q5_0, q5_K_M, q6_K, q8_0
48
-
49
-
50
  ## Getting started
51
 
52
  ### 1. Download GGUF models from hugging face
53
-
54
  First, download the model from Hugging Face. You can use the `huggingface_hub` library or download it manually:
55
 
56
  ```bash
57
- pip install huggingface_hub
58
- huggingface-cli download {model_name}
59
  ```
60
 
61
- This will download the model to your current directory. Make sure to replace {model_name} with the actual username and model name from your Hugging Face repository.
62
 
63
  ## 2. Install llama.cpp
64
 
@@ -68,19 +38,17 @@ You have several options for installing llama.cpp:
68
 
69
  This gives you the most flexibility and control. Follow the instructions in the llama.cpp repository to build from source:
70
 
71
- ```bash
72
-
73
- git clone https://github.com/ggerganov/llama.cpp
74
- cd llama.cpp
75
- cmake -B build
76
- cmake --build build --config Release
77
- ```
78
-
79
  For more information about how to build llama.cpp from source please refere to llama.cpp documentation on how to build from source: **[llama.cpp build from source](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)**.
80
 
81
  **2. Download pre-built binaries:**
82
 
83
- If you prefer a quicker setup, you can download pre-built binaries for your operating system. Check the llama.cpp repository for available binaries.
84
 
85
  **3. Use Docker:**
86
 
@@ -88,35 +56,33 @@ For a more contained environment, you can use the official llama.cpp Docker imag
88
 
89
  For detailed instructions and more information, please check the llama.cpp documentation on docker: **[llama.cpp docker](https://github.com/ggerganov/llama.cpp/blob/master/docs/docker.mdg)**.
90
 
 
91
  ### 3. Start playing with your model
 
 
92
 
93
- Run simple text completion
94
- ```bash
95
- llama-cli -m {path-to-gguf-model} -p "I believe the meaning of life is" -n 128
96
- ```
97
 
98
- Run in conversation mode
99
- ```bash
100
- llama-cli -m {path-to-gguf-model} -p "You are a helpful assistant" -cnv -co
101
- ```
102
 
103
- ## Useful links
104
- - View our [release blogpost](https://huggingface.co/blog/falcon3).
105
- - Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
106
-
107
- ## Technical Report
108
 
109
- Coming soon....
 
 
 
 
 
 
110
 
111
- ## Citation
112
- If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
113
-
114
  ```
115
  @misc{Falcon3,
116
- title = {The Falcon 3 Family of Open Models},
117
- url = {https://huggingface.co/blog/falcon3},
118
- author = {Falcon-LLM Team},
119
  month = {December},
120
  year = {2024}
121
  }
122
- ```
 
 
1
  ---
2
  language:
3
  - en
4
  - fr
5
  - es
6
  - pt
 
 
 
 
7
  tags:
8
  - falcon3
9
+ base_model: tiiuae/Falcon3-10B-Instruct
10
  ---
11
 
 
 
 
 
12
  # Falcon3-10B-Instruct-GGUF
13
 
14
+ Tired of needing massive GPUs just to experiment with the latest Large Language Models? Wish you could run powerful LLMs locally on your laptop or even your phone? This GGUF model makes it possible!
15
+
16
+ Falcon3-10B-Instruct-GGUF is designed for efficient inference on consumer-grade hardware. It leverages the GGUF format for optimal performance, allowing you to experience the power of LLMs without the need for expensive hardware.
17
+
18
+ Whether you're a student, hobbyist, or developer, this model opens up a world of possibilities for exploring natural language processing, text generation, and AI-powered applications right at your fingertips.
19
+
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Getting started
22
 
23
  ### 1. Download GGUF models from hugging face
 
24
  First, download the model from Hugging Face. You can use the `huggingface_hub` library or download it manually:
25
 
26
  ```bash
27
+ pip install huggingface_hub
28
+ huggingface-cli download {model_name}
29
  ```
30
 
31
+ This will download the model to your current directory. Make sure to replace {model_name} with the actual username and model name from your Hugging Face repository.
32
 
33
  ## 2. Install llama.cpp
34
 
 
38
 
39
  This gives you the most flexibility and control. Follow the instructions in the llama.cpp repository to build from source:
40
 
41
+ ```bash
42
+ git clone https://github.com/ggerganov/llama.cpp
43
+ cd llama.cpp
44
+ cmake -B build
45
+ cmake --build build --config Release
46
+ ```
 
 
47
  For more information about how to build llama.cpp from source please refere to llama.cpp documentation on how to build from source: **[llama.cpp build from source](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)**.
48
 
49
  **2. Download pre-built binaries:**
50
 
51
+ If you prefer a quicker setup, you can download pre-built binaries for your operating system. Check the llama.cpp repository for available binaries.
52
 
53
  **3. Use Docker:**
54
 
 
56
 
57
  For detailed instructions and more information, please check the llama.cpp documentation on docker: **[llama.cpp docker](https://github.com/ggerganov/llama.cpp/blob/master/docs/docker.mdg)**.
58
 
59
+
60
  ### 3. Start playing with your model
61
+ - <details open>
62
+ <summary>Run simple text completion</summary>
63
 
64
+ ```bash
65
+ llama-cli -m {path-to-gguf-model} -p "I believe the meaning of life is" -n 128
66
+ ```
 
67
 
68
+ </details>
 
 
 
69
 
70
+ - <details>
71
+ <summary>Run in conversation mode</summary>
 
 
 
72
 
73
+ ```bash
74
+ llama-cli -m {path-to-gguf-model} -p "You are a helpful assistant" -cnv -co
75
+ </details>
76
+ ```
77
+
78
+ # Citation
79
+ If Falcon3 family were helpful to your work, feel free to give us a cite.
80
 
 
 
 
81
  ```
82
  @misc{Falcon3,
83
+ title = {The Falcon 3 family of Open Models},
84
+ author = {TII Team},
 
85
  month = {December},
86
  year = {2024}
87
  }
88
+ ```