|
--- |
|
language: |
|
- en |
|
- fr |
|
- es |
|
- pt |
|
tags: |
|
- falcon3 |
|
base_model: tiiuae/Falcon3-3B-Instruct |
|
license: other |
|
license_name: falcon-llm-license |
|
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
<div align="center"> |
|
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/> |
|
</div> |
|
|
|
# Falcon3-3B-Instruct |
|
|
|
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters. |
|
|
|
**Falcon3-3B-Instruct** achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks. |
|
Falcon3-3B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K. |
|
|
|
## Model Details |
|
- Architecture |
|
- Transformer-based causal decoder-only architecture |
|
- 22 decoder blocks |
|
- Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads |
|
- Wider head dimension: 256 |
|
- High RoPE value to support long context understanding: 1000042 |
|
- Uses SwiGLU and RMSNorm |
|
- 32K context length |
|
- 131K vocab size |
|
- Pruned and healed from Falcon3-7B-Base on only 100 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips |
|
- Posttrained on 1.2 million samples of STEM, conversational, code, safety and function call data |
|
- Supports EN, FR, ES, PT |
|
- Developed by [Technology Innovation Institute](https://www.tii.ae) |
|
- License: TII Falcon-LLM License 2.0 |
|
- Model Release Date: December 2024 |
|
|
|
|
|
## Getting started |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = "tiiuae/Falcon3-3B-Instruct" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "How many hours in one day?" |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=1024 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(response) |
|
``` |
|
|
|
</details> |
|
|
|
<br> |
|
|
|
## Benchmarks |
|
We report in the following table our internal pipeline benchmarks: |
|
|
|
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;"> |
|
<colgroup> |
|
<col style="width: 10%;"> |
|
<col style="width: 10%;"> |
|
<col style="width: 7%;"> |
|
<col style="width: 7%;"> |
|
<col style="width: 7%;"> |
|
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;"> |
|
</colgroup> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Benchmark</th> |
|
<th>Llama-3.2-3B-Instruct</th> |
|
<th>Qwen2.5-3B-Instruct</th> |
|
<th>Nemotron-Mini-4B-Instruct</th> |
|
<th>Falcon3-3B-Instruct</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="3">General</td> |
|
<td>MMLU (5-shot)</td> |
|
<td>29.3</td> |
|
<td>56.2</td> |
|
<td><b>56.4</b></td> |
|
<td>55.7</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU-PRO (5-shot)</td> |
|
<td>11.9</td> |
|
<td>17.2</td> |
|
<td>23.3</td> |
|
<td><b>29.7</b></td> |
|
</tr> |
|
<tr> |
|
<td>IFEval</td> |
|
<td><b>73.9</b></td> |
|
<td>64.2</td> |
|
<td>66.5</td> |
|
<td>68.3</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3">Math</td> |
|
<td>GSM8K (5-shot)</td> |
|
<td>68.5</td> |
|
<td>58.5</td> |
|
<td>46.9</td> |
|
<td><b>71.9</b></td> |
|
</tr> |
|
<tr> |
|
<td>GSM8K (8-shot, COT)</td> |
|
<td><b>74.5</b></td> |
|
<td>64.0</td> |
|
<td>46.5</td> |
|
<td>71.6</td> |
|
</tr> |
|
<tr> |
|
<td>MATH Lvl-5 (4-shot)</td> |
|
<td>2.4</td> |
|
<td>0.0</td> |
|
<td>0.0</td> |
|
<td><b>19.9</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="5">Reasoning</td> |
|
<td>Arc Challenge (25-shot)</td> |
|
<td>38.9</td> |
|
<td>50.0</td> |
|
<td>51.2</td> |
|
<td><b>58.5</b></td> |
|
</tr> |
|
<tr> |
|
<td>GPQA (0-shot)</td> |
|
<td>28.1</td> |
|
<td>29.2</td> |
|
<td>27.0</td> |
|
<td><b>29.6</b></td> |
|
</tr> |
|
<tr> |
|
<td>GPQA (0-shot, COT)</td> |
|
<td>11.3</td> |
|
<td>11.0</td> |
|
<td>12.2</td> |
|
<td><b>26.5</b></td> |
|
</tr> |
|
<tr> |
|
<td>MUSR (0-shot)</td> |
|
<td>34.9</td> |
|
<td><b>40.2</b></td> |
|
<td>38.9</td> |
|
<td>39.0</td> |
|
</tr> |
|
<tr> |
|
<td>BBH (3-shot)</td> |
|
<td>33.1</td> |
|
<td>44.1</td> |
|
<td>38.1</td> |
|
<td><b>45.4</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="4">CommonSense Understanding</td> |
|
<td>PIQA (0-shot)</td> |
|
<td>74.6</td> |
|
<td>73.8</td> |
|
<td>74.6</td> |
|
<td><b>75.6</b></td> |
|
</tr> |
|
<tr> |
|
<td>SciQ (0-shot)</td> |
|
<td>77.2</td> |
|
<td>60.7</td> |
|
<td>71.0</td> |
|
<td><b>95.5</b></td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (0-shot)</td> |
|
<td>-</td> |
|
<td>-</td> |
|
<td>-</td> |
|
<td><b>65.0</b></td> |
|
</tr> |
|
<tr> |
|
<td>OpenbookQA (0-shot)</td> |
|
<td>40.8</td> |
|
<td>41.2</td> |
|
<td><b>43.2</b></td> |
|
<td>42.2</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2">Instructions following</td> |
|
<td>MT-Bench (avg)</td> |
|
<td>7.1</td> |
|
<td><b>8.0</b></td> |
|
<td>6.7</td> |
|
<td>7.2</td> |
|
</tr> |
|
<tr> |
|
<td>Alpaca (WC)</td> |
|
<td><b>19.4</b></td> |
|
<td>19.4</td> |
|
<td>9.6</td> |
|
<td>15.5</td> |
|
</tr> |
|
<tr> |
|
<td>Tool use</td> |
|
<td>BFCL AST (avg)</td> |
|
<td><b>85.2</b></td> |
|
<td>84.8</td> |
|
<td>59.8</td> |
|
<td>65.3</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2">Code</td> |
|
<td>EvalPlus (0-shot) (avg)</td> |
|
<td>55.2</td> |
|
<td><b>69.4<b></td> |
|
<td>40.0</td> |
|
<td>52.9</td> |
|
</tr> |
|
<tr> |
|
<td>Multipl-E (0-shot) (avg)</td> |
|
<td>31.6</td> |
|
<td>29.2</td> |
|
<td>19.6</td> |
|
<td><b>32.9</b></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
## Useful links |
|
- View our [release blogpost](https://huggingface.co/blog/falcon3). |
|
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers. |
|
|
|
## Technical Report |
|
Coming soon.... |
|
|
|
## Citation |
|
If the Falcon3 family of models were helpful to your work, feel free to give us a cite. |
|
|
|
``` |
|
@misc{Falcon3, |
|
title = {The Falcon 3 Family of Open Models}, |
|
url = {https://huggingface.co/blog/falcon3}, |
|
author = {Falcon-LLM Team}, |
|
month = {December}, |
|
year = {2024} |
|
} |
|
``` |