Falcon3-7B-Base / README.md
puneeshkhanna's picture
Update README.md
109c33b verified
|
raw
history blame
6.54 kB
---
language:
- en
tags:
- falcon3
---
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)
# TL;DR
# Model Details
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
## Model Description
- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Transformer-base
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-LLM License 2.0
<br>
# Usage
Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):
## Using the Pytorch model with 🤗 transformers
### Running the model on a CPU
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
### Running the model on a GPU using `torch.compile`
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
</details>
# Training Details
## Training Data
Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data.
## Training Procedure
Falcon3-7B is trained on 256 H100 nodes (world size 2048).
### Training Hyperparameters
| **Hyperparameter** | **Value** | **Comment** |
|--------------------|------------|---------------------------------------|
| Precision | `bfloat16` | |
| Optimizer | AdamW | |
| Max learning rate | 6e-4 | Following a WSD (warmup-stable-decay) |
| | | learning rate scheduler |
| Weight decay | 1e-1 | |
| z-loss | 1e-4 | |
| Batch size | Variable | Batch size was gradually increased |
| | | during the training |
# Evaluation
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Category</th>
<th>Benchmark</th>
<th>Llama3.1-8B</th>
<th>Qwen2-7B</th>
<th>Qwen2.5-7B</th>
<th>Falcon3-7B-Base</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">General</td>
<td>MMLU (5-shot)</td>
<td>65.2</td>
<td>70.4</td>
<td>74.2</td>
<td>67.5</td>
</tr>
<tr>
<td>MMLU-PRO (5-shot)</td>
<td>32.7</td>
<td>42.1</td>
<td>43.5</td>
<td>39.2</td>
</tr>
<tr>
<td>IFEval</td>
<td>12.0</td>
<td>30.6</td>
<td>33.9</td>
<td>34.3</td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>GSM8K (5-shot)</td>
<td>49.4</td>
<td>77.9</td>
<td>82.9</td>
<td>76.2</td>
</tr>
<tr>
<td>MATH(4-shot)</td>
<td>4.1</td>
<td>17.5</td>
<td>15.5</td>
<td>18.0</td>
</tr>
<tr>
<td rowspan="4">Reasoning</td>
<td>Arc Challenge (25-shot)</td>
<td>53.4</td>
<td>57.4</td>
<td>59.0</td>
<td>59.6</td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td>31.0</td>
<td>31.9</td>
<td>33.0</td>
<td>35.5</td>
</tr>
<tr>
<td>MUSR (0-shot)</td>
<td>38.0</td>
<td>44.1</td>
<td>44.2</td>
<td>47.3</td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td>46.5</td>
<td>53.3</td>
<td>54.0</td>
<td>51.0</td>
</tr>
<tr>
<td rowspan="4">CommonSense Understanding</td>
<td>PIQA (0-shot)</td>
<td>80.3</td>
<td>79.8</td>
<td>78.7</td>
<td>77.7</td>
</tr>
<tr>
<td>SciQ (0-shot)</td>
<td>96.3</td>
<td>95.9</td>
<td>96.6</td>
<td>95.3</td>
</tr>
<tr>
<td>Winogrande (0-shot)</td>
<td>74.0</td>
<td>72.1</td>
<td>72.9</td>
<td>71.0</td>
</tr>
<tr>
<td>OpenbookQA (0-shot)</td>
<td>33.4</td>
<td>35.2</td>
<td>33.6</td>
<td>31.4</td>
</tr>
</tbody>
</table>
# Citation