Model card for repvit_m0_9.dist_300e_in1k
A RepViT image classification model. Trained on ImageNet-1k with distillation by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 5.5
- GMACs: 0.8
- Activations (M): 7.4
- Image size: 224 x 224
- Papers:
- RepViT: Revisiting Mobile CNN From ViT Perspective: https://arxiv.org/abs/2307.09283
- Original: https://github.com/THU-MIG/RepViT
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('repvit_m0_9.dist_300e_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'repvit_m0_9.dist_300e_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 48, 56, 56])
# torch.Size([1, 96, 28, 28])
# torch.Size([1, 192, 14, 14])
# torch.Size([1, 384, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'repvit_m0_9.dist_300e_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 384, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Citation
@misc{wang2023repvit,
title={RepViT: Revisiting Mobile CNN From ViT Perspective},
author={Ao Wang and Hui Chen and Zijia Lin and Hengjun Pu and Guiguang Ding},
year={2023},
eprint={2307.09283},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 1,017
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.