lora_fine_tuned_boolq_googlemt_sloberta
This model is a fine-tuned version of EMBEDDIA/sloberta on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6642
- Accuracy: 0.6217
- F1: 0.4767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6841 | 0.0424 | 50 | 0.6647 | 0.6217 | 0.4767 |
0.6685 | 0.0848 | 100 | 0.6632 | 0.6217 | 0.4767 |
0.6944 | 0.1272 | 150 | 0.6639 | 0.6217 | 0.4767 |
0.6581 | 0.1696 | 200 | 0.6632 | 0.6217 | 0.4767 |
0.6625 | 0.2120 | 250 | 0.6642 | 0.6217 | 0.4767 |
0.6532 | 0.2545 | 300 | 0.6661 | 0.6217 | 0.4767 |
0.6741 | 0.2969 | 350 | 0.6645 | 0.6217 | 0.4767 |
0.6852 | 0.3393 | 400 | 0.6642 | 0.6217 | 0.4767 |
Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for tjasad/lora_fine_tuned_boolq_googlemt_sloberta
Base model
EMBEDDIA/sloberta