speech / README.md
tluo23's picture
End of training
0696e8e verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - librispeech_asr
metrics:
  - wer
model-index:
  - name: SpeechGPT
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: librispeech_asr
          type: librispeech_asr
          config: clean
          split: None
          args: 'config: clean, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 2.8092665855143033

SpeechGPT

This model is a fine-tuned version of openai/whisper-small on the librispeech_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0813
  • Wer: 2.8093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0956 0.12 1000 0.1065 3.6519
0.1002 0.24 2000 0.0997 3.5453
0.0841 0.36 3000 0.0941 3.3057
0.0839 0.48 4000 0.0905 3.1783
0.0821 0.6 5000 0.0855 2.9595
0.0626 0.72 6000 0.0839 2.9310
0.0643 0.84 7000 0.0821 2.8112
0.0908 0.97 8000 0.0813 2.8093

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2