asahi417's picture
model update
220fd7a
|
raw
history blame
6.74 kB
---
datasets:
- tner/tweetner7
metrics:
- f1
- precision
- recall
model-index:
- name: tner/bert-base-tweetner7-random
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: tner/tweetner7
type: tner/tweetner7
args: tner/tweetner7
metrics:
- name: F1 (test_2021)
type: f1
value: 0.609117361784675
- name: Precision (test_2021)
type: precision
value: 0.6011938281337988
- name: Recall (test_2021)
type: recall
value: 0.6172525439407955
- name: Macro F1 (test_2021)
type: f1_macro
value: 0.559165089199025
- name: Macro Precision (test_2021)
type: precision_macro
value: 0.5499368578582033
- name: Macro Recall (test_2021)
type: recall_macro
value: 0.5694430718770875
- name: Entity Span F1 (test_2021)
type: f1_entity_span
value: 0.7572194954913822
- name: Entity Span Precision (test_2020)
type: precision_entity_span
value: 0.7474929577464788
- name: Entity Span Recall (test_2021)
type: recall_entity_span
value: 0.7672024979761767
- name: F1 (test_2020)
type: f1
value: 0.6103825136612021
- name: Precision (test_2020)
type: precision
value: 0.6445470282746683
- name: Recall (test_2020)
type: recall
value: 0.5796574987026466
- name: Macro F1 (test_2020)
type: f1_macro
value: 0.5675359874657813
- name: Macro Precision (test_2020)
type: precision_macro
value: 0.6021803835272678
- name: Macro Recall (test_2020)
type: recall_macro
value: 0.5387624182505003
- name: Entity Span F1 (test_2020)
type: f1_entity_span
value: 0.7273224043715847
- name: Entity Span Precision (test_2020)
type: precision_entity_span
value: 0.7680323139065205
- name: Entity Span Recall (test_2020)
type: recall_entity_span
value: 0.6907109496626881
pipeline_tag: token-classification
widget:
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
example_title: "NER Example 1"
---
# tner/bert-base-tweetner7-random
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
for more detail). It achieves the following results on the test set of 2021:
- F1 (micro): 0.609117361784675
- Precision (micro): 0.6011938281337988
- Recall (micro): 0.6172525439407955
- F1 (macro): 0.559165089199025
- Precision (macro): 0.5499368578582033
- Recall (macro): 0.5694430718770875
The per-entity breakdown of the F1 score on the test set are below:
- corporation: 0.46514047866805414
- creative_work: 0.3904698874917273
- event: 0.4183066361556064
- group: 0.5614035087719299
- location: 0.6389645776566757
- person: 0.8044590643274854
- product: 0.6354114713216957
For F1 scores, the confidence interval is obtained by bootstrap as below:
- F1 (micro):
- 90%: [0.6000414265573856, 0.6190415373631918]
- 95%: [0.5981509067764902, 0.6206829089362571]
- F1 (macro):
- 90%: [0.6000414265573856, 0.6190415373631918]
- 95%: [0.5981509067764902, 0.6206829089362571]
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-base-tweetner7-random/raw/main/eval/metric.json)
and [metric file of entity span](https://huggingface.co/tner/bert-base-tweetner7-random/raw/main/eval/metric_span.json).
### Usage
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
```shell
pip install tner
```
and activate model as below.
```python
from tner import TransformersNER
model = TransformersNER("tner/bert-base-tweetner7-random")
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
```
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
### Training hyperparameters
The following hyperparameters were used during training:
- dataset: ['tner/tweetner7']
- dataset_split: train_random
- dataset_name: None
- local_dataset: None
- model: bert-base-cased
- crf: True
- max_length: 128
- epoch: 30
- batch_size: 32
- lr: 0.0001
- random_seed: 0
- gradient_accumulation_steps: 1
- weight_decay: 1e-07
- lr_warmup_step_ratio: 0.15
- max_grad_norm: 1
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-base-tweetner7-random/raw/main/trainer_config.json).
### Reference
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-camacho-collados-2021-ner,
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
author = "Ushio, Asahi and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-demos.7",
doi = "10.18653/v1/2021.eacl-demos.7",
pages = "53--62",
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
}
```